BackgroundExtremely preterm infants (≤ 28 weeks gestation) commonly require endotracheal intubation and mechanical ventilation (MV) to maintain adequate oxygenation and gas exchange. Given that MV is independently associated with important adverse outcomes, efforts should be made to limit its duration. However, current methods for determining extubation readiness are inaccurate and a significant number of infants fail extubation and require reintubation, an intervention that may be associated with increased morbidities. A variety of objective measures have been proposed to better define the optimal time for extubation, but none have proven clinically useful. In a pilot study, investigators from this group have shown promising results from sophisticated, automated analyses of cardiorespiratory signals as a predictor of extubation readiness. The aim of this study is to develop an automated predictor of extubation readiness using a combination of clinical tools along with novel and automated measures of cardiorespiratory behavior, to assist clinicians in determining when extremely preterm infants are ready for extubation.MethodsIn this prospective, multicenter observational study, cardiorespiratory signals will be recorded from 250 eligible extremely preterm infants with birth weights ≤1250 g immediately prior to their first planned extubation. Automated signal analysis algorithms will compute a variety of metrics for each infant, and machine learning methods will then be used to find the optimal combination of these metrics together with clinical variables that provide the best overall prediction of extubation readiness. Using these results, investigators will develop an Automated system for Prediction of EXtubation (APEX) readiness that will integrate the software for data acquisition, signal analysis, and outcome prediction into a single application suitable for use by medical personnel in the neonatal intensive care unit. The performance of APEX will later be prospectively validated in 50 additional infants.DiscussionThe results of this research will provide the quantitative evidence needed to assist clinicians in determining when to extubate a preterm infant with the highest probability of success, and could produce significant improvements in extubation outcomes in this population.Trial registrationClinicaltrials.gov identifier: NCT01909947. Registered on July 17 2013.Trial sponsor: Canadian Institutes of Health Research (CIHR).Electronic supplementary materialThe online version of this article (doi:10.1186/s12887-017-0911-z) contains supplementary material, which is available to authorized users.
The majority of extreme preterm infants require endotracheal intubation and mechanical ventilation (ETT-MV) during the first days of life to survive. Unfortunately this therapy is associated with adverse clinical outcomes and consequently, it is desirable to remove ETT-MV as quickly as possible. However, about 25% of extubated infants will fail and require re-intubation which is also associated with a 5-fold increase in mortality and a longer stay in the intensive care unit. Therefore, the ultimate goal is to determine the optimal time for extubation that will minimize the duration of MV and maximize the chances of success. This paper presents a new objective predictor to assist clinicians in making this decision. The predictor uses a modern machine learning method (Support Vector Machines) to determine the combination of measures of cardiorespiratory variability, computed automatically, that best predicts extubation readiness. Our results demonstrate that this predictor accurately classified infants who would fail extubation.
Previously, we presented automated methods for thoraco-abdominal asynchrony estimation and movement artifact detection in respiratory inductance plethysmography (RIP) signals. This paper combines and improves these methods to give a method for the automated, off-line detection of pause, movement artifact, and asynchrony. Simulation studies demonstrated that the new combined method is accurate and robust in the presence of noise. The new procedure was successfully applied to cardiorespiratory signals acquired postoperatively from infants in the recovery room. A comparison of the events detected with the automated method to those visually scored by an expert clinician demonstrated a higher agreement (κ = 0.52) than that amongst several human scorers (κ = 0.31) in a clinical study . The method provides the following advantages: first, it is fully automated; second, it is more efficient than visual scoring; third, the analysis is repeatable and standardized; fourth, it provides greater agreement with an expert scorer compared to the agreement between trained scorers; fifth, it is amenable to online detection; and lastly, it is applicable to uncalibrated RIP signals. Examples of applications include respiratory monitoring of postsurgical patients and sleep studies.
We recently presented a comprehensive automated off-line method for supervised respiratory event classification from uncalibrated respiratory inductive plethysmography signals. This method required training with a sample of clinical measurements classified by an expert. This human intervention is labor intensive and involves subjective judgments that may introduce bias to the automated classification. To address this we developed a novel method for unsupervised respiratory event classification, named AUREA (Automated Unsupervised Respiratory Event Analysis). This paper describes the algorithm underlying AUREA and demonstrates its successful application to respiratory signals acquired from infants in the postoperative recovery room. The advantages of AUREA are: first, it provides real-time classification of respiratory events; second, it requires no human intervention; and lastly, it has substantially better performance than the supervised method.
Infants recovering from anesthesia are at risk of life threatening Postoperative Apnea (POA). POA events are rare, and so the study of POA requires the analysis of long cardiorespiratory records. Manual scoring is the preferred method of analysis for these data, but it is limited by low intra- and inter-scorer repeatability. Furthermore, recommended scoring rules do not provide a comprehensive description of the respiratory patterns. This work describes a set of manual scoring tools that address these limitations. These tools include: (i) a set of definitions and scoring rules for 6 mutually exclusive, unique patterns that fully characterize infant respiratory inductive plethysmography (RIP) signals; (ii) RIPScore, a graphical, manual scoring software to apply these rules to infant data; (iii) a library of data segments representing each of the 6 patterns; (iv) a fully automated, interactive formal training protocol to standardize the analysis and establish intra- and inter-scorer repeatability; and (v) a quality control method to monitor scorer ongoing performance over time. To evaluate these tools, three scorers from varied backgrounds were recruited and trained to reach a performance level similar to that of an expert. These scorers used RIPScore to analyze data from infants at risk of POA in two separate, independent instances. Scorers performed with high accuracy and consistency, analyzed data efficiently, had very good intra- and inter-scorer repeatability, and exhibited only minor confusion between patterns. These results indicate that our tools represent an excellent method for the analysis of respiratory patterns in long data records. Although the tools were developed for the study of POA, their use extends to any study of respiratory patterns using RIP (e.g., sleep apnea, extubation readiness). Moreover, by establishing and monitoring scorer repeatability, our tools enable the analysis of large data sets by multiple scorers, which is essential for longitudinal and multicenter studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.