BackgroundThe optimal approach for reporting reintubation rates in extremely preterm infants is unknown. This study aims to longitudinally describe patterns of reintubation in this population over a broad range of observation windows following extubation.MethodsTiming and reasons for reintubation following a first planned extubation were collected from infants with birth weight ≤1,250 g. An algorithm was generated to discriminate between reintubations attributable to respiratory and non-respiratory causes. Frequency and cumulative distribution curves were constructed for each category using 24 h intervals. The ability of observation windows to capture respiratory-related reintubations while limiting non-respiratory reasons was assessed using a receiver operating characteristic curve.ResultsOut of 194 infants, 91 (47%) were reintubated during hospitalization; 68% for respiratory and 32% for non-respiratory reasons. Respiratory-related reintubation rates steadily increased from 0 to 14 days post-extubation before reaching a plateau. In contrast, non-respiratory reintubations were negligible in the first post-extubation week, but became predominant after 14 days. An observation window of 7 days captured 77% of respiratory-related reintubations while only including 14% of non-respiratory cases.ConclusionReintubation patterns are highly variable and affected by the reasons for reintubation and observation window used. Ideally, reintubation rates should be reported using a cumulative distribution curve over time.
IMPORTANCE Spontaneous breathing trials (SBTs) are used to determine extubation readiness in extremely preterm neonates (gestational age Յ28 weeks), but these trials rely on empirical combinations of clinical events during endotracheal continuous positive airway pressure (ET-CPAP).OBJECTIVES To describe clinical events during ET-CPAP and to assess accuracy of comprehensive clinical event combinations in predicting successful extubation compared with clinical judgment alone. DESIGN, SETTING, AND PARTICIPANTSThis multicenter diagnostic study used data from 259 neonates seen at 5 neonatal intensive care units from the prospective Automated Prediction of Extubation Readiness (APEX) study from September 1, 2013, through August 31, 2018. Neonates with birth weight less than 1250 g who required mechanical ventilation were eligible. Neonates deemed to be ready for extubation and who underwent ET-CPAP before extubation were included. INTERVENTIONSIn the APEX study, cardiorespiratory signals were recorded during 5-minute ET-CPAP, and signs of clinical instability were monitored.MAIN OUTCOMES AND MEASURES Four clinical events were documented during ET-CPAP: apnea requiring stimulation, presence and cumulative durations of bradycardia and desaturation, and increased supplemental oxygen. Clinical event occurrence was assessed and compared between extubation pass and fail (defined as reintubation within 7 days). An automated algorithm was developed to generate SBT definitions using all clinical event combinations and to compute diagnostic accuracies of an SBT in predicting extubation success. RESULTSOf 259 neonates (139 [54%] male) with a median gestational age of 26.1 weeks (interquartile range [IQR], 24.9-27.4 weeks) and median birth weight of 830 g (IQR, 690-1019 g), 147 (57%) had at least 1 clinical event during ET-CPAP. Apneas occurred in 10% (26 of 259) of neonates, bradycardias in 19% (48), desaturations in 53% (138), and increased oxygen needs in 41% (107). Neonates with successful extubation (71% [184 of 259]) had significantly fewer clinical events (51% [93 of 184] vs 72% [54 of 75], P = .002), shorter cumulative bradycardia duration (median, 0 seconds [IQR, 0 seconds] vs 0 seconds [IQR, 0-9 seconds], P < .001), shorter cumulative desaturation duration (median, 0 seconds [IQR, 0-59 seconds] vs 25 seconds [IQR, 0-90 seconds], P = .003), and less increase in oxygen (median, 0% [IQR, 0%-6%] vs 5% [0%-18%], P < .001) compared with neonates with failed extubation. In total, 41 602 SBT definitions were generated, demonstrating sensitivities of 51% to 100% (median, 96%) and specificities of 0% to 72% (median, 22%). Youden indices for all SBTs ranged from 0 to 0.32 (median, 0.17), suggesting low accuracy. The SBT with highest Youden index defined SBT pass as having no apnea (with desaturation requiring stimulation) or increase in oxygen requirements by 15% from baseline and predicted extubation success with a sensitivity of 93% and a specificity of 39%. CONCLUSIONS AND RELEVANCEThe findings suggest that extremely preterm neo...
BackgroundExtremely preterm infants (≤ 28 weeks gestation) commonly require endotracheal intubation and mechanical ventilation (MV) to maintain adequate oxygenation and gas exchange. Given that MV is independently associated with important adverse outcomes, efforts should be made to limit its duration. However, current methods for determining extubation readiness are inaccurate and a significant number of infants fail extubation and require reintubation, an intervention that may be associated with increased morbidities. A variety of objective measures have been proposed to better define the optimal time for extubation, but none have proven clinically useful. In a pilot study, investigators from this group have shown promising results from sophisticated, automated analyses of cardiorespiratory signals as a predictor of extubation readiness. The aim of this study is to develop an automated predictor of extubation readiness using a combination of clinical tools along with novel and automated measures of cardiorespiratory behavior, to assist clinicians in determining when extremely preterm infants are ready for extubation.MethodsIn this prospective, multicenter observational study, cardiorespiratory signals will be recorded from 250 eligible extremely preterm infants with birth weights ≤1250 g immediately prior to their first planned extubation. Automated signal analysis algorithms will compute a variety of metrics for each infant, and machine learning methods will then be used to find the optimal combination of these metrics together with clinical variables that provide the best overall prediction of extubation readiness. Using these results, investigators will develop an Automated system for Prediction of EXtubation (APEX) readiness that will integrate the software for data acquisition, signal analysis, and outcome prediction into a single application suitable for use by medical personnel in the neonatal intensive care unit. The performance of APEX will later be prospectively validated in 50 additional infants.DiscussionThe results of this research will provide the quantitative evidence needed to assist clinicians in determining when to extubate a preterm infant with the highest probability of success, and could produce significant improvements in extubation outcomes in this population.Trial registrationClinicaltrials.gov identifier: NCT01909947. Registered on July 17 2013.Trial sponsor: Canadian Institutes of Health Research (CIHR).Electronic supplementary materialThe online version of this article (doi:10.1186/s12887-017-0911-z) contains supplementary material, which is available to authorized users.
The majority of extreme preterm infants require endotracheal intubation and mechanical ventilation (ETT-MV) during the first days of life to survive. Unfortunately this therapy is associated with adverse clinical outcomes and consequently, it is desirable to remove ETT-MV as quickly as possible. However, about 25% of extubated infants will fail and require re-intubation which is also associated with a 5-fold increase in mortality and a longer stay in the intensive care unit. Therefore, the ultimate goal is to determine the optimal time for extubation that will minimize the duration of MV and maximize the chances of success. This paper presents a new objective predictor to assist clinicians in making this decision. The predictor uses a modern machine learning method (Support Vector Machines) to determine the combination of measures of cardiorespiratory variability, computed automatically, that best predicts extubation readiness. Our results demonstrate that this predictor accurately classified infants who would fail extubation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.