Experiments were made on the posterior parietal association cortical areas 5 and in 17 hemispheres of 11 monkeys, 6 M. mulatta and 5 M. arctoides. The electrical signs of the activity of single cortical cells were recorded with microelectrodes in waking animals as they carried out certain behavioral acts in response to a series of sensory cues. The behavioral paradigms were one for detection alone, and a second for detection plus projection of the arm to contact a stationary or moving target placed at arm's length. Of the 125 microelectrode penetrations made, 1,451 neurons were identified in terms of the correlation of their activity with the behavioral acts and their sensitivity or lack of it to sensory stimuli delivered passively; 180 were studied quantitatively. The locations of cortical neurons were identified in serial sections; 94 penetrations and 1,058 neurons were located with certainty. About two-thirds of the neurons of area 5 were activated by passive rotation of the limbs at their joints; of these, 82% were related to single, contralateral joints, 10% to two or more contralateral joints, 6% to ipsilateral, and 2% to joints on both sides of the body. A few of the latter were active during complex bodily postures. A large proportion of area 5 neurons were relatively insensitive to passive joint rotations, as compared with similar neurons of the postcentral gyrus, but were driven to high rates of discharge when the same joint was rotated during an active movement of the animal...
The pulvinar nuclei of the thalamus are proportionately larger in higher mammals, particularly in primates, and account for a quarter of the total mass. Traditionally, these nuclei have been divided into oral (somatosensory), superior and inferior (both visual) and medial (visual, multi-sensory) divisions. With reciprocal connections to vast areas of cerebral cortex, and input from the colliculus and retina, they occupy an analogous position in the extra-striate visual system to the lateral geniculate nucleus in the primary visual pathway, but deal with higher-order visual and visuomotor transduction. With a renewed recent interest in this thalamic nuclear collection, and growth in our knowledge of the cortex with which it communicates, perhaps the time is right to look to new dimensions in the pulvinar code.
Selection of the appropriate action in a changing environment involves a chain of events that goes from perception through decision to action and evaluation of the outcomes. What and where in the brain are the correlates of these events? The ventral premotor cortex (PMv) is a candidate because (1) it is involved in sensory transformations for visually guided actions and in perceptual decisions, and (2) it is connected with sensory, motor, and high-level cognitive areas related to performance monitoring. Therefore, we hypothesized that it would be the site for representing sensory perception for action and for evaluating the decision consequences. Trained monkeys were required to discriminate the orientation of two lines showed in sequence and separated by a delay. Monkeys compared the orientation of the second line with the memory trace of the first and communicated whether the second was to the left or to the right of the first. Here we show that the activity of PMv neurons reflected (1) the first stimuli and its memory trace during the delay and comparison periods, (2) its comparison with the second stimuli, including the strength of the evidence, and (3) the result of the discrimination (choice). After the monkeys reported the choice, there were neurons that only encoded the choices, others only the outcomes, and others the choices and outcomes together. The representation of task cues, decision variables, and their outcomes suggest a role of PMv as part of a supervisory network involved in shaping future behavior and in learning.
Depending on the circumstances, decision making requires either comparing current sensory information with that showed recently or with that recovered from long-term memory (LTM). In both cases, to learn from past decisions and adapt future ones, memories and outcomes have to be available after the report of a decision. The ventral premotor cortex (PMv) is a good candidate for integrating memory traces and outcomes because it is involved in working-memory, decision-making, and encoding the outcomes. To test this hypothesis we recorded the extracellular unit activity while monkeys performed 2 variants of a visual discrimination task. In one task, the decision was based on the comparison of the orientation of a current stimulus with that of another stimulus recently shown. In the other task, the monkeys had to compare the current orientation of the stimulus with the correct one retrieved from LTM. Here, we report that when the task required retrieval of the stimulus and its use in the following trials, the neurons continue encoding this internal representation together with the outcomes after the monkey has emitted the motor response. However, this codification did not occur when the stimulus was shown recently and updated every trial. These results suggest that the PMv activity represents the information needed to evaluate the consequences of a decision. We interpret these results as evidence that the PMv plays a role in evaluating the outcomes that can serve to learn and thus adapt future decision to environmental demands.decision-making ͉ outcomes ͉ single neural activity ͉ working memory D ecision making is a complex process essential for guiding behavior that involves evaluating past and current events and their consequences. Electrophysiological studies have shown that several cortical areas participate in the decision making process (1-15). Most decisions are made by comparing recent events with current ones. This is what happens in tasks where monkeys are trained to decide on the difference between 2 sensory stimuli (S1 and S2) showed sequentially and separated by a short interval: the continuous discrimination (CD) task (11,(16)(17)(18). This has revealed the role played by several cortical areas in decision making (4,5,11,(19)(20)(21), including the participation of the ventral premotor cortex (PMv) in reporting outcomes and in integrating previous choices with their consequences (12).Decisions are also made by comparing long-term memorized events with current ones and, to our knowledge, there are few reports of the cortical areas being involved in a decision process when part of the sensory information has to be recovered from long-term memory (11). To evaluate the consequences of these decisions the information about the retrieved sensory evidence has to be available together with the information about previous choices and their outcomes. This process can be studied with the Fixed Discrimination with Implicit Reference task (FDIR), a variant of the CD task, in which S1 was implicit and monkeys had to r...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.