In this paper, we consider the existence of least action nodal solutions for the quasilinear defocusing Schrödinger equation in [Formula: see text]: [Formula: see text] where [Formula: see text] is a positive continuous potential, [Formula: see text] is of subcritical growth, [Formula: see text] and [Formula: see text] are two non-negative parameters. By considering a minimizing problem restricted on a partial Nehari manifold, we prove the existence of least action nodal solution via deformation flow arguments and [Formula: see text]-estimates.
Descreve-se neste trabalho uma proposta de currículo interdisciplinar para a formação de professores de ciências da natureza. O curso permite a obtenção de quatro diplomas: professor de ciências para o Ensino Fundamental (nomenclatura brasileira), professor de biologia, física e química para o Ensino Médio. O diploma de professor de ciências é obtido com a integralização de créditos oferecidos ao longo dos três primeiros anos do curso. Para cada ano subsequente é possível obter os diplomas de professor do Ensino Médio. Os componentes curriculares pertinentes às ciências da natureza são inteiramente interdisciplinares nos três primeiros anos. No quarto ano são oferecidas disciplinas específicas de biologia, física e química, para a respectiva formação de professor do Ensino Médio.
This paper is principally devoted to revisit the remarkable works of Keller and Osserman and generalize some previous results related to the those for the class of quasilinear elliptic problem
{ div ϕfalse(false|∇ufalse|false)∇u=afalse(xfalse)ffalse(ufalse)inΩ,u≥0inΩ,u=∞on∂Ω,where either Ω⊂boldRN with N≥1 is a smooth bounded domain or Ω=boldRN. The function ϕ includes special cases appearing in mathematical models in nonlinear elasticity, plasticity, generalized Newtonian fluids, and in quantum physics. The proofs are based on comparison principle, variational methods and topological arguments on the Orlicz–Sobolev spaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.