We present the design and evaluation of a Datalog engine for execution in Graphics Processing Units (GPUs). The engine evaluates recursive and non-recursive Datalog queries using a bottom-up approach based on typical relational operators. It includes a memory management scheme that automatically swaps data between memory in the host platform (a multicore) and memory in the GPU in order to reduce the number of memory transfers. To evaluate the performance of the engine, four Datalog queries were run on the engine and on a single CPU in the multicore host. One query runs up to 200 times faster on the (GPU) engine than on the CPU.
Relational learning algorithms mine complex databases for interesting patterns. Usually, the search space of patterns grows very quickly with the increase in data size, making it impractical to solve important problems. In this work we present the design of a relational learning system, that takes advantage of graphics processing units (GPUs) to perform the most time consuming function of the learner, rule coverage. To evaluate performance, we use four applications: a widely used rela
We have designed data list processing for multicore-GPU platforms and significantly improved the performance of both numerical and symbolic applications. For the latter, a novel aspect of our design was the management and processing of new data dynamically generated within GPUs.This paper presents various optimisations to our first design [1] aimed to use more the GPU, through reducing communication between the host (a multicore) and the GPU, in order to improve performance further. We present experimental results for three applications with different granularities and access patterns. Performance was improved again, significantly in some cases; using multicore-GPU platforms efficiently may involve complex changes to software.
Markov Logic is an expressive and widely used knowledge representation formalism that combines logic and probabilities, providing a powerful framework for inference and learning tasks. Most Markov Logic implementations perform inference by transforming the logic representation into a set of weighted propositional formulae that encode a Markov network, the ground Markov network. Probabilistic inference is then performed over the grounded network. Constructing, simplifying, and evaluating the network are the main steps of the inference phase. As the size of a Markov network can grow rather quickly, Markov Logic Network (MLN) inference can become very expensive, motivating a rich vein of research on the optimization of MLN performance. We claim that parallelism can have a large role on this task. Namely, we demonstrate that widely available Graphics Processing Units (GPUs) can be used to improve the performance of a state-of-theart MLN system, Tuffy, with minimal changes. Indeed, comparing the performance of our GPU-based system, TuGPU, to that of the Alchemy, Tuffy and RockIt systems on three widely used applications shows that TuGPU is up to 15x times faster than the other systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.