Human pluripotent stem cell-based in vitro models that reflect human physiology have the potential to reduce the number of drug failures in clinical trials and offer a cost-effective approach for assessing chemical safety. Here, human embryonic stem (ES) cell-derived neural progenitor cells, endothelial cells, mesenchymal stem cells, and microglia/ macrophage precursors were combined on chemically defined polyethylene glycol hydrogels and cultured in serum-free medium to model cellular interactions within the developing brain. The precursors self-assembled into 3D neural constructs with diverse neuronal and glial populations, interconnected vascular networks, and ramified microglia. Replicate constructs were reproducible by RNA sequencing (RNA-Seq) and expressed neurogenesis, vasculature development, and microglia genes. Linear support vector machines were used to construct a predictive model from RNA-Seq data for 240 neural constructs treated with 34 toxic and 26 nontoxic chemicals. The predictive model was evaluated using two standard hold-out testing methods: a nearly unbiased leave-one-out cross-validation for the 60 training compounds and an unbiased blinded trial using a single holdout set of 10 additional chemicals. The linear support vector produced an estimate for future data of 0.91 in the cross-validation experiment and correctly classified 9 of 10 chemicals in the blinded trial.organoid | machine learning | tissue engineering | differentiation | toxicology T here is a pressing need for improved methods to assess the safety of drugs and other compounds (1-5). Success rates for drug approval are declining despite higher research and development spending (6), and clinical trials often fail due to toxicities that were not identified through animal testing (7). In addition, most of the chemicals in commerce have not been rigorously assessed for safety despite growing concerns over the potential impact of industrial and environmental exposures on human health (2-5). Animal models are costly, time consuming, and fail to recapitulate many aspects of human physiology, which has motivated agencies such as the National Institutes of Health (NIH) and the US Environmental Protection Agency (EPA) to initiate programs that emphasize human cellular approaches for assessing the safety of drugs (1) and environmental chemicals (2, 3). In vitro cellular models that accurately reflect human physiology have the potential to improve the prediction of drug toxicity early in the development pipeline (1) and would provide a cost-effective approach for testing other sources of chemical exposure, including food additives, cosmetics, pesticides, and industrial chemicals (2-5).The human brain is particularly sensitive to toxic insults during development and early childhood (8), and there is growing concern that exposure to environmental chemicals may be linked to the rising incidence of neurodevelopmental disorders worldwide (4). Human brain development is mediated by highly coordinated cellular interactions between functionally ...
The past few years have seen a surge of interest in the field of probabilistic logic learning and statistical relational learning. In this endeavor, many probabilistic logics have been developed. ProbLog is a recent probabilistic extension of Prolog motivated by the mining of large biological networks. In ProbLog, facts can be labeled with probabilities. These facts are treated as mutually independent random variables that indicate whether these facts belong to a randomly sampled program. Different kinds of queries can be posed to ProbLog programs. We introduce algorithms that allow the efficient execution of these queries, discuss their implementation on top of the YAP-Prolog system, and evaluate their performance in the context of large networks of biological entities.
Yet Another Prolog (YAP) is a Prolog system originally developed in the mid-eighties and that has been under almost constant development since then. This paper presents the general structure and design of the YAP system, focusing on three important contributions to the Logic Programming community. First, it describes the main techniques used in YAP to achieve an efficient Prolog engine. Second, most Logic Programming systems have a rather limited indexing algorithm. YAP contributes to this area by providing a dynamic indexing mechanism, or just-in-time indexer. Third, a important contribution of the YAP system has been the integration of both or-parallelism and tabling in a single Logic Programming system.
Abstract. Inductive Logic Programming (ILP) is a popular approach for learning rules for classification tasks. An important question is how to combine the individual rules to obtain a useful classifier. In some instances, converting each learned rule into a binary feature for a Bayes net learner improves the accuracy compared to the standard decision list approach [3,4,14]. This results in a two-step process, where rules are generated in the first phase, and the classifier is learned in the second phase. We propose an algorithm that interleaves the two steps, by incrementally building a Bayes net during rule learning. Each candidate rule is introduced into the network, and scored by whether it improves the performance of the classifier. We call the algorithm SAYU for Score As You Use. We evaluate two structure learning algorithms Naïve Bayes and Tree Augmented Naïve Bayes. We test SAYU on four different datasets and see a significant improvement in two out of the four applications. Furthermore, the theories that SAYU learns tend to consist of far fewer rules than the theories in the two-step approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.