Informed driving is becoming a key feature to increase the sustainability of taxi companies. The sensors installed in each vehicle are providing new opportunities to automatically discover knowledge, which in return deliver information for realtime decision making. Intelligent transportation systems for taxi dispatching and time-saving route finding are already exploring this sensing data. In this paper, we introduce a novel methodology to predict the spatial distribution of taxi-passenger in a shortterm time horizon using streaming data. We have done so by firstly aggregating the information into a histogram time series. Then, we combined three time series forecasting techniques to output our prediction. Experimental tests were done using the online data transmitted by 441 vehicles of a fleet running in the city of Porto, Portugal. Our results demonstrated that the proposed framework can provide an effective insight into the spatiotemporal distribution of taxi-passenger demand in a 30 minutes horizon. Index Terms-taxi-passenger demand, mobility intelligence, GPS data, data streams,time series forecasting, auto-regressive integrated moving average (ARIMA), time-varying Poisson models, ensemble learning.
Yet Another Prolog (YAP) is a Prolog system originally developed in the mid-eighties and that has been under almost constant development since then. This paper presents the general structure and design of the YAP system, focusing on three important contributions to the Logic Programming community. First, it describes the main techniques used in YAP to achieve an efficient Prolog engine. Second, most Logic Programming systems have a rather limited indexing algorithm. YAP contributes to this area by providing a dynamic indexing mechanism, or just-in-time indexer. Third, a important contribution of the YAP system has been the integration of both or-parallelism and tabling in a single Logic Programming system.
Portable digital devices equipped with GPS antennas are ubiquitous sources of continuous information for location-based Expert and Intelligent Systems. The availability of these traces on the human mobility patterns is growing explosively. To mine this data is a fascinating challenge which can produce a big impact on both travelers and transit agencies. This paper proposes a novel incremental framework to maintain statistics on the urban mobility dynamics over a time-evolving origin-destination (O-D) matrix. The main motivation behind such task is to be able to learn from the location-based samples which are continuously being produced, independently on their source, dimensionality or (high) communicational rate. By doing so, the authors aimed to obtain a generalist framework capable of summarizing relevant context-aware information which is able to follow, as close as possible, the stochastic dynamics on the human mobility behavior. Its potential impact ranges Expert Systems for decision support across multiple industries, from demand estimation for public transportation planning till travel time prediction for intelligent routing systems, among others. The proposed methodology settles on three steps: (i) Half-Space trees are used to divide the city area into dense subregions of equal mass. The uncovered regions form an O-D matrix which can be updated by transforming the trees'leaves into conditional nodes (and vice-versa). The (ii) Partioning Incremental Algorithm is then employed to discretize the target variable's historical values on each matrix cell. Finally, a (iii) dimensional hierarchy is defined to discretize the domains of the independent variables depending on the cell's samples. A Taxi Network running on a mid-sized city in Portugal was selected as a case study. The Travel Time Estimation (TTE) problem was regarded as a real-world application. Experiments using one million data samples were conducted to validate the methodology. The results obtained highlight the straightforward contribution of this method: it is capable of resisting to the drift while still approximating context-aware solutions through a multidimensional discretization of the feature space. It is a step ahead in estimating the real-time mobility dynamics, regardless of its application field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.