A rainfall interception methodology was implemented in a deciduousFicus benjamina (L.) tree to evaluate the interception loss, as well as the dynamics on canopy storage capacity (S) and free through fall (ρ). Measurements of gross precipitation (P g ), through fall and meteorological data were recorded every 5 minutes. Nineteen individual storms from summer to autumn 2005, and twenty one in spring to autumn, 2006 were analyzed. For the studied period, 151.59 mm and 203.35 mm of rainfall occurred on 2005 and 2006 respectively. Canopy interception was 59.46% and 70.98% of P g for the first and second year. Throughfall data recorded during 2005 were 38.14% (of P g ) and 27.21% (of P g ) for 2006. The throughfall and gross precipitation relationship yielded S = 1.50 mm for the 2005 data. In 2006 storms were analyzed in detail, where ρ and S varied in a range from 0.10 to 0.64 and from 1.00 to 2.03 mm, respectively. Moreover, application of the Rutter and Gash models with two years of rainfall data (2005-2006) from the study area indicated an underestimation and overestimation of 69% and 88%, respectively. The slightly best prediction of the interception loss was obtained with the Gash model. Yet S and ρ change significantly due to wind speed, temperature, rainfall intensity and seasonal vegetation development.
Abstract. Humans greatly benefit from natural water resources, also known as hydrological ecosystem services. However, these services may be reduced by population growth, land use changes, and climate change. As these problems become more critical, the need to quantify water resources increases. The estimation of water yield and its distribution are of great importance for the management of water resources. In the present study, the average annual water yield of the hydrographic basins in the southern region of Ecuador was estimated for the 1970–2015 period using the InVEST water yield model based on the Budyko framework. The model estimates annual surface run-off at the pixel, sub-basin, and basin level considering the following variables: precipitation, actual evapotranspiration, land cover/use, soil depth, and available water content for plants. The model was calibrated by varying the ecohydrological parameter Z to reduce error between estimated and observed water yield. The results showed that the modeling of water yield in the majority of the hydrographic basins was satisfactory, allowing the basins to be ranked according to their importance for water production. The Mayo and Zamora basins had the highest water production, corresponding with 934 and 1218 mm per year, respectively, while the Alamor and Catamayo basins had the lowest water production, corresponding with 206 and 291 mm per year, respectively. The present study provides an initial estimate of water yield at the basin level in the southern region of Ecuador, and the results can be used to evaluate the impacts of land cover changes and climate change over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.