Both sectors of the Iberian Pyrite Belt, Portuguese and Spanish, have been exploited since ancient times, but more intensively during and after the second half of the 19th century. Large volumes of polymetallic sulfide ore were extracted in open pits or in underground works, processed without environmental concerns, and the generated waste rocks and tailings were simply deposited in the area. Many of these mining sites were abandoned for years under the action of erosive agents, leading to the spread of trace elements and the contamination of soils, waters and sediments. Some of these mine sites have been submitted to rehabilitation actions, mostly using constructive techniques to dig and contain the contaminated tailings and other waste materials, but the remaining soil still needs to be treated with the best available techniques to recover its ecosystem functions. Besides the degraded physical structure and poor nutritional status of these soils, they have common characteristics, as a consequence of the pyrite oxidation and acid drainage produced, such as a high concentration of trace elements and low pH, which must be considered in the remediation plans. This manuscript aims to review the results from studies which have already covered these topics in the Iberian Pyrite Belt, especially in its Portuguese sector, considering: (i) soils’ physicochemical characteristics; (ii) potentially toxic trace elements’ concentration; and (iii) sustainable remediation technologies to cope with this type of soil contamination. Phytostabilization, after the amelioration of the soil’s properties with organic and inorganic amendments, was investigated at the lab and field scale by several authors, and their results were also considered.
Abstract. Corn yield, topography and soil characteristics were sampled on a 26 ha area of a centre pivot irrigated cropland. The aim of the study was to determine relationships between corn yield, field topography and soil characteristics. The study was carried out in the Alentejo region of Portugal. Corn yield was measured with a combine harvester fitted with a grain-flow sensor and positioned by means of the Global Positioning System (GPS). A grid-based digital elevation model (DEM) with 1-m resolution was constructed and several topographic attributes were calculated from the DEM: the local slope gradient (S), profile curvature (Curv), specific catchments area (SCa), and a steady-state wetness index (W). Yield and topographical attributes were computed for areas of radius 5, 10, 25 and 50 m, being considered its maximum, minimum, range and average values. The soil was systematically sampled with a mechanical probe for a total of 109 soil profiles used for analysis of the following soil superficial (<0.30 m) characteristics: extractable phosphorous (P 2 O 5 ) and extractable potassium (K 2 O), soil pH, cation exchange capacity (CEC) and exchangeable bases. With centre pivot irrigation systems, the Wave 50 index was shown to be useful for the identification of field areas in which low corn yields may be due to lack of water. At the same time, SCa was found to be useful for the identification of field areas in which low yields are due to excess water and drainage problems. Higher positive correlation between pH, Ca and Curv were observed; calcium concentration was found on the transition areas between flat surfaces to concave ones, while lower values were detected in convex and concave areas. Topographical indexes, namely Wave 50 , SCa and Curv, can be especially helpful in site-specific management for delineating areas where crop yields are more sensitive to extreme water conditions.
Pinewood biomass in Portugal can be considered a major source of biochar for soil physical, chemical, and biological edaphic amendment. This work intended to evaluate the aptitude of lab produced biochar for upgrading soil moisture dynamics’ relationships considering mixtures of biochar with silica-based sand. The methodology used focused on the carbonization of pine biomass with inert atmosphere at 300 °C, 400 °C, 500 °C and 600 °C, followed by a chemical proximate and thermogravimetric analysis, scanning electron microscopy, Fourier Transform Infrared analysis, numerical modeling, and characterization of biochar porosity by gas adsorption (Brunauer–Emmett–Teller) and mercury porosimetry. The results showed the increased amounts of soil water retention and plant available water, evaluated through pF curves, due to biochar application. The thermogravimetric analysis mass loss patterns and FTIR transmittance, reflected major structural modifications in carbonized products by comparison with raw biomass. Mercury porosimetry showed that biochar pores between 392 and 250 μm and 32 μm and 6 μm gave the highest pore volume for water retention with a major increase from carbonization, by comparison with physical activation. The used methodologies allowed us to conclude that the carbonaceous feedstock can potentiate the improvement of soil water relations aiming at agricultural land use.
Tillage-induced soil erosion or redistribution increases spatial variation of several soil properties and often reduces the productive capacity of soil resources. Our objectives were to identify the extent of this type of erosion by observing the changes in soil morphological properties in the field and analysing its possible effects on soil productivity. The study was initiated in 2001 and conducted at two irrigated sites located approximately at Terena, Alandrol, 80 km east of Évora, Portugal. They were planted to corn (Zea mays L.) during this study, but have a long history of agricultural use with a trend toward increasing intensity in recent years. Soils in the field studies are classified mainly as Calcaric Regosols, Calcaric Cambisols, Luvisols and small areas of Fluvisols. The amount of erosion was estimated by simulation and verified by describing the lithology and measuring soil carbonates. The presence of carbonates in the superficial Ap horizons of soils that were previously devoid of this compound, provide evidence of soil redistribution: (1) in soils derived from calcareous parent material, this is the result of a re-carbonation process; (2) in soils derived from non-calcareous parent material the presence of carbonates in the superficial Ap horizons results from a carbonation process. On both sites, A and B, approximately 17% of the soils sampled were either carbonated or re-carbonated. Carbonation and re-carbonation of soil profiles confirmed that tillage had redistributed the soil-ploughing layer over time. Decreased corn yield was also observed as slope increase. If current agricultural practices are continued in this area, a decrease in soil quality and maximum yield on higher slopes can be expected.
Due to its high land productivity, irrigated agriculture has an increasing role in food production. In the Alentejo region (southern Portugal) the irrigated area has grown since the completion of the Alqueva dam in 2002. Climatic change patterns foreseen for the Mediterranean region (more heat extremes, less precipitation and river flow, increasing risk of droughts and decrease in crop yields) are prone to soil salinization and sodification in irrigated areas in the region. The Roxo dam has some of the higher records of water salinity and sodicity in Portugal, which makes the Roxo irrigated area (RIA) a very interesting case study. This paper aimed at two main objectives for the RIA: (i) evaluate soil salinization and sodification, and make spatial predictions of soils susceptibility to these degradation types; (ii) monitor current salinity and sodicity of the water, and simulate the effect of empirical based scenarios of water salinity and sodicity. The RIA (8250 ha) extends ~20 km along the Roxo river (northern Aljustrel), in Cenozoic sedimentary formations. Main soils mapped are: Luvisols (~40%), Fluvisols and Regosols (~20%), Gleysols and Planosols (~20%) and Vertisols (~10%). However, there are only five soil profiles with detailed analytical data from a more recent soil survey with 83 profile descriptions in the RIA and surrounding area. Irrigation water of the Roxo dam and drainage water of the Roxo river were monitored almost monthly during Jul/2014-Nov/2015 and Jun/2016-Jan/2017, for determination of electrical conductivity (EC), sodium adsorption ratio (SAR), and other parameters. Soil salinity was not a significant problem in the RIA but a potential abundance of sodic soils was found that need future confirmation. A qualitative soil salinity index applied to the RIA suggests that soils most susceptible to salinity occur to a much smaller extent when this index is obtained from the soil profile data (approach B) than when it is based on information of the soil map (approach A). During the monitoring periods, both the water of the Roxo dam and of the Roxo river were slight to moderate saline for crop growth, with no restrictions for soil infiltration. The Roxo dam received water from the Alqueva dam for the first time between June and September 2016, and a small, though regular, decrease of the water EC (0.99 to 0.76 dS m<sup>-1</sup>) was observed during the same period. Three scenarios of irrigation water, identified by Low/High EC-SAR (L-L, H-H, L-H) were simulated with the Watsuit model. Low EC water (L-L and L-H) represent wet years and show no risk of soil salinity in the rootzone. However, the risk of waterlogging increases in sodic soils, especially with the scenario (L-H). High EC water (H-H) represents dryer years and results in severe saline conditions in the rootzone. In all three scenarios, prosodic and sodic soils are most sensible to degradation by salinization, sodification or both.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.