The most salient argument that needs to be addressed universally is Early Breast Cancer Detection (EBCD), which helps people live longer lives. The Computer-Aided Detection (CADs)/Computer-Aided Diagnosis (CADx) system is indeed a software automation tool developed to assist the health professions in Breast Cancer Detection and Diagnosis (BCDD) and minimise mortality by the use of medical histopathological image classification in much less time. This paper purposes of examining the accuracy of the Convolutional Neural Network (CNN), which can be used to perceive breast malignancies for initial breast cancer detection to determine which strategy is efficient for the early identification of breast cell malignancies formation of masses and Breast microcalcifications on the mammogram. When we have insufficient data for a new domain that is desired to be handled by a pre-trained Convolutional Neural Network of Residual Network (ResNet50) for Breast Cancer Detection and Diagnosis, to obtain the Discriminative Localization, Convolutional Neural Network with Class Activation Map (CAM) has also been used to perform breast microcalcifications detection to find a specific class in the Histopathological image. The test results indicate that this method performed almost 225.15% better at determining the exact location of disease (Discriminative Localization) through breast microcalcifications images. ResNet50 seems to have the highest level of accuracy for images of Benign Tumour (BT)/Malignant Tumour (MT) cases at 97.11%. ResNet50's average accuracy for pre-trained Convolutional Neural Network is 94.17%.
Internet of Medical Things (IoMT) enabled e-healthcare has the potential to greately improve conventional healthcare services significantly. However, security and privacy become major issues of IoMT because of the restricted processing abilities, storage, and energy constraints of the sensors. Therefore, it leads to infeasibility of developing traditional cryptographic solutions to the IoMT sensors. In order to ensure security on sensitive medical data, effective encryption and authentication techniques need to be designed to assure security of the patients and healthcare service providers. In this view, this study designs an effective metaheuristic optimization based encryption with user authentication (EMOE-UA) technique for IoMT environment. This work proposes an EMOE-UA technique aims to accomplish mutual authentication for addressing the security issues and reducing the computational complexity. Moreover, the EMOE-UA technique employs optimal multikey homomorphic encryption (OMKHE) technique to encrypt the IoMT data. Furthermore, the improved social spider optimization algorithm (ISSOA) was employed for the optimal multikey generation of the MKHE technique. The experimental result analysis of the EMOE-UA technique takes place using benchmark data and the results are examined under various aspects. The simulation results reported the considerably better performance of the EMOE-UA technique over the existing techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.