The properties of water at the nanoscale are crucial in many areas of biology, but the confinement of water molecules in sub-nanometre channels in biological systems has received relatively little attention. Advances in nanotechnology make it possible to explore the role played by water molecules in living systems, potentially leading to the development of ultrasensitive biosensors. Here we show that the adsorption of water by a self-assembled monolayer of single-stranded DNA on a silicon microcantilever can be detected by measuring how the tension in the monolayer changes as a result of hydration. Our approach relies on the microcantilever bending by an amount that depends on the tension in the monolayer. In particular, we find that the tension changes dramatically when the monolayer interacts with either complementary or single mismatched single-stranded DNA targets. Our results suggest that the tension is mainly governed by hydration forces in the channels between the DNA molecules and could lead to the development of a label-free DNA biosensor that can detect single mutations. The technique provides sensitivity in the femtomolar range that is at least two orders of magnitude better than that obtained previously with label-free nanomechanical biosensors and with label-dependent microarrays.
Hypersaline environments harbour the highest number of virus-like particles reported for planktonic systems. However, very little is known about the genomic diversity of these virus assemblages since most of the knowledge on halophages is based on the analysis of a few isolates infecting strains of hyperhalophilic Archaea that may not be representatives of the natural microbiota. Here, we report the characterization, through a metagenomic approach, of the viral assemblage inhabiting a crystallizer pond (CR30) from a multi-pond solar saltern in Santa Pola (SE Spain). A total of 1.35 Mbp were cloned that yielded a total of 620 kb sequenced viral DNA. The metavirome was highly diverse and different from virus communities of marine and other aquatic environments although it showed some similarities with metaviromes from high-salt ponds in solar salterns in San Diego (SW USA), indicating some common traits between high-salt viromes. A high degree of diversity was found in the halophages as revealed by the presence of 2479 polymorphic nucleotides. Dinucleotide frequency analysis of the CR30 metavirome showed a good correlation with GC content and enabled the establishment of different groups, and even the assignment of their putative hosts: the archaeon Haloquadratum walsbyi and the bacterium Salinibacter ruber.
RNA structure plays a fundamental role in internal initiation of translation. Picornavirus internal ribosome entry site (IRES) are long, efficient cis-acting elements that recruit the ribosome to internal mRNA sites. However, little is known about long-range constraints determining the IRES RNA structure. Here, we sought to investigate the functional and structural relevance of the invariant apical stem of a picornavirus IRES. Mutation of this apical stem revealed better performance of G:C compared with C:G base pairs, demonstrating that the secondary structure solely is not sufficient for IRES function. In turn, mutations designed to disrupt the stem abolished IRES activity. Lack of tolerance to accept genetic variability in the apical stem was supported by the presence of coupled covariations within the adjacent stem–loops. SHAPE structural analysis, gel mobility-shift and microarrays-based RNA accessibility revealed that the apical stem contributes to maintain IRES RNA structure through the generation of distant interactions between two adjacent stem–loops. Our results demonstrate that a highly interactive structure constrained by distant interactions involving invariant G:C base pairs plays a key role in maintaining the RNA conformation necessary for IRES-mediated translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.