Public lighting represents a large part of the energy consumption of towns and cities. Efficient management of public lighting can entail significant energy savings. This work presents a smart system for managing public lighting networks based on wireless communication and the DALI protocol. Wireless communication entails significant economic savings, as there is no need to install new wiring and visual impacts and damage to the facades of historical buildings in city centers are avoided. The DALI protocol uses bidirectional communication with the ballast, which allows its status to be controlled and monitored at all times. The novelty of this work is that it tackles all aspects related to the management of public lighting: a standard protocol, DALI, was selected to control the ballast, a wireless node based on the IEEE 802.15.4 standard with a DALI interface was designed, a network layer that considers the topology of the lighting network has been developed, and lastly, some user-friendly applications for the control and maintenance of the system by the technical crews of the different towns and cities have been developed.
Precision agriculture can be defined as the science of using technology to improve the agricultural production. It is advisable for farmers to use a decision support system; in fact, real–time monitoring of climatic conditions is the only way to know the water needed by a cultivation. On the other hand, since the 1990s, a strong decrease of the Mediterranean Quercus has been observed in the pastures of southwestern Spain and Portugal, causing a high mortality of holm and cork oak trees. Among the factors associated with this decrease, the radical decomposition caused by Phytophthora Cinnamomi is remarkable for its gravity, which makes it necessary to reforest the trees and to monitor the microclimatic factors that have an influence on this regeneration. Wireless Sensor Networks (WSN) are a technology in full evolution and development, as well as their appropriate use in cultivations that help to implement ecological techniques. With these considerations in this work five units/nodes with one or more sensors that allow different environmental readings have been developed. In this work, the acquisition of data obtained from different sensors has been achieved, allowing the monitoring of climatic elements such as soil moisture, air quality, temperature and humidity, rainfall intensity, precipitation level, wind speed and direction, luminous flux and atmospheric pressure. A web page has been designed where the user can consult the climatic conditions of the cultivation or reforestation. Different devices interconnected with a central unit have been developed where measurements of the cultivation are sent for its later analysis by the farmer. The microclimatic data acquisition developed in the WSN proposed in this paper allows a farmer to make decisions about the irrigation of the cultivation, use of fertilizers, the development and maturation phases of the cultivated products, obtaining the optimum stages of cultivation and harvesting.
The effort to continuously improve and innovate smart appliances (SA) energy management requires an experimental research and development environment which integrates widely differing tools and resources seamlessly. To this end, this paper proposes a novel Direct Load Control (DLC) testbed, aiming to conveniently support the research community, as well as analyzing and comparing their designs in a laboratory environment. Based on the LabVIEW computing platform, this original testbed enables access to knowledge of major components such as online weather forecasting information, distributed energy resources (e.g., energy storage, solar photovoltaic), dynamic electricity tariff from utilities and demand response (DR) providers together with different mathematical optimization features given by General Algebraic Modelling System (GAMS). This intercommunication is possible thanks to the different applications programming interfaces (API) incorporated into the system and to intermediate agents specially developed for this case. Different basic case studies have been presented to envision the possibilities of this system in the future and more complex scenarios, to actively support the DLC strategies. These measures will offer enough flexibility to minimize the impact on user comfort combined with support for multiple DR programs. Thus, given the successful results, this platform can lead to a solution towards more efficient use of energy in the residential environment.Energies 2019, 12, 3336 2 of 16 since 2010 [3]. Although the electricity demand for major appliances has slightly decreased since 2007, mainly due to improvements in their energy efficiency, the rapid proliferation of small appliances and brown goods has absorbed these savings. The energy consumption due to these small loads has grown twice as fast as that of large appliances in the last decade. In addition, only one-third of domestic appliances consumption is under regulatory protection, particularly in emerging markets. This may become even more relevant in the near future as the demand for electricity in buildings increases due to the impact of the charging infrastructure for electric vehicles. While it is true that there is a need to increase the rigor of existing policies by extending regulatory coverage to a broader range of devices, on the other hand, user awareness may be the key factor. However, to achieve this, consumers should be rewarded to some extent when changing their behavior. The availability of information and communication technologies (ICT) on SG can be decisive in meeting this commitment through the widespread adoption of DR strategies.In other areas, such as power electronics, it is common to find a complete chain of modeling, development, testing, optimization, virtual validation, and rapid prototyping commercial tools that integrate seamlessly into a convenient testing and development environment such as these tools of Typhoon (Typhon, Somerville, USA) [4] and dSPACE (dSPACE, Paderborn, Germany) [5]. It is possible to find testbed...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.