Most transduction methods for measuring particle-surface interactions are unable to differentiate the strength of interaction and largely reliant on extensive washing to reduce the ubiquitous non-specific background. Label-based methods, in particular, are limited in wide applicability due to their inherent operational complexity. On the other hand, label-free force-spectroscopic methods that can differentiate particlesurface interaction strength are skill-demanding and time-consuming. Here, we present a label-free anharmonic (nonlinear) acoustic transduction method employing the quartz crystal resonator that reads out ligand-receptor binding based on the interaction strength. We show that while stronger specific interactions are transduced more strongly, and in linear proportionality to the ligand concentration on microparticles, non-specific interactions are significantly attenuated. This allows ligand quantification with high specificity and sensitivity in realtime under flow without separate washing steps. Constructing an analytical model of a quartz resonator, we can relate the number and type (specific vs. non-specific) of ligandreceptor interactions with the change in characteristic nonlinearity coefficient of the resonator. The entirely-electronic and microfluidic-integrable transduction method could potentially allow a simple, fast and reliable way for characterising particlesurface interactions with economy of scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.