We determine the phase diagrams of conservative diffusive contact processes by means of numerical simulations. These models are versions of the ordinary diffusive single-creation, pair-creation, and triplet-creation contact processes in which the particle number is conserved. The transition between the frozen and active states was determined by studying the system in the subcritical regime, and the nature of the transition, whether continuous or first order, was determined by looking at the fractal dimension of the critical cluster. For the single-creation model the transition remains continuous for any diffusion rate. For pair- and triplet-creation models, however, the transition becomes first order for high enough diffusion rate. Our results indicate that in the limit of infinite diffusion rate the jump in density equals 2/3 for the pair-creation model and 5/6 for the triplet-creation model.
Based on quasistationary distribution ideas, a general finite size scaling theory is proposed for discontinuous nonequilibrium phase transitions into absorbing states. Analogously to the equilibrium case, we show that quantities such as response functions, cumulants, and equal area probability distributions all scale with the volume, thus allowing proper estimates for the thermodynamic limit. To illustrate these results, five very distinct lattice models displaying nonequilibrium transitions-to single and infinitely many absorbing states-are investigated. The innate difficulties in analyzing absorbing phase transitions are circumvented through quasistationary simulation methods. Our findings (allied to numerical studies in the literature) strongly point to a unifying discontinuous phase transition scaling behavior for equilibrium and this important class of nonequilibrium systems.
By combining different ideas, a general and efficient protocol to deal with discontinuous phase transitions at low temperatures is proposed. For small T's, it is possible to derive a generic analytic expression for appropriate order parameters, whose coefficients are obtained from simple simulations. Once in such regimes simulations by standard algorithms are not reliable; an enhanced tempering method, the parallel tempering-accurate for small and intermediate system sizes with rather low computational cost-is used. Finally, from finite size analysis, one can obtain the thermodynamic limit. The procedure is illustrated for four distinct models, demonstrating its power, e.g., to locate coexistence lines and the phase density at the coexistence.
Motivated by recent findings, we discuss the existence of a direct and robust mechanism providing discontinuous absorbing transitions in short-range systems with single species, with no extra symmetries or conservation laws. We consider variants of the contact process, in which at least two adjacent particles (instead of one, as commonly assumed) are required to create a new species. Many interaction rules are analyzed, including distinct cluster annihilations and a modified version of the original pair contact process. Through detailed time-dependent numerical simulations, we find that for our modified models, the phase transitions are of first order, hence contrasting with their corresponding usual formulations in the literature, which are of second order. By calculating the order-parameter distributions, the obtained bimodal shapes as well as the finite-scale analysis reinforce coexisting phases and thus a discontinuous transition. These findings strongly suggest that the above particle creation requirements constitute a minimum and fundamental mechanism determining the phase coexistence in short-range contact processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.