The objective of this study was to evaluate the antifungal activity of farnesol and its interaction with traditional antifungals against drug-resistant strains of Candida species. To do so, we studied the minimum in vitro inhibitory concentration (MIC) of amphotericin B (AMB), fluconazole (FLC), itraconazole (ITC), caspofungin (CAS) and farnesol against 45 isolates of Candida spp., i.e., 24 C. albicans, 16 C. parapsilosis and 5 C. tropicalis through the use of the broth microdilution method. Then, the isolates were tested with the combination of farnesol plus drugs to which they were previously found to be resistant. Additionally, the strains were pre-incubated at sub-inhibitory farnesol concentrations and their antifungal susceptibilities were re-evaluated. We found the MIC values for farnesol varied from 4.68-150 µM for Candida spp., with 19 isolates having a MIC > 1 mg/l, 18 a MIC ≥ 64 mg/l, 35 having a MIC ≥ 1 mg/l and 6 isolates a MIC ≥ 2 mg/l or were resistant to AMB, FLC, ITC and CAS, respectively. Significant MIC reductions were observed when farnesol and antifungal drugs were combined (P < 0.05) and when Candida strains were incubated with farnesol (P < 0.05). We conclude that the in vitro effects of farnesol improved the activity of traditional antifungals to which the Candida spp. isolates were resistant. These results support further investigation of the role of farnesol in the balance of the sterol biosynthetic pathway and how it interferes with cell viability.
Tyrosol is a quorum-sensing molecule of Candida albicans able to induce hyphal development in the early and intermediate stages of biofilm growth. In the present study, we evaluated the effect of high concentrations of exogenous tyrosol on planktonic cells and biofilms of C. albicans (n = 10) and C. tropicalis (n = 10), and investigated whether tyrosol could be synergic to antifungals that target cellular ergosterol. Antifungal susceptibility and drug interaction against planktonic cells were investigated by the broth microdilution method. Tyrosol was able to inhibit planktonic cells, with MIC values ranging from 2.5 to 5.0 mM for both species. Synergism was observed between tyrosol/amphotericin B (11/20 strains), tyrosol/itraconazole (18/20 strains) and tyrosol/fluconazole (18/20 strains). Exogenous tyrosol alone or combined with antifungals at both 10 × MIC and 50 × MIC were able to reduce biofilm of both Candida species. Mature biofilms were susceptible to tyrosol alone at 50 × MIC or combined with amphotericin at both 10 × MIC and 50 × MIC. On the other hand, tyrosol plus azoles at both 10 × MIC and 50 × MIC enhanced biofilm growth.
Candida tropicalis has been associated with invasive candidiasis, being the first or second most common non-Candida albicans Candida species isolated in humans with candidemia and candiduria, as well as being frequently isolated from healthy animals. This study aimed to characterize C. tropicalis isolates (n = 64) obtained from several animal species regarding antifungal susceptibility and production of virulence factors. The isolates were obtained from the microbiota of healthy animals (goats, n = 25; sheep, n = 6; psittacines, n = 14; rheas, n = 6; horses, n = 2; sirenians, n = 5; shrimp, n = 1), as well as from aquatic mammals found dead in the environment (cetaceans, n = 5). The isolates were subjected to in vitro susceptibility testing by broth microdilution according to the CLSI M27-A3 protocol against amphotericin B, caspofungin, itraconazole, and fluconazole. We also evaluated the virulence attributes, such as proteases and phospholipases, as well as biofilm formation. Resistance to itraconazole (n = 29) and fluconazole (n = 30) was detected among isolates from every source; resistance to both azoles was detected in 24 isolates, but none of them were resistant to amphotericin B and caspofungin. Protease production was detected in the majority of the isolates (n = 59), but phospholipase was produced by only a few of them (n = 6). The isolates showed different patterns in biofilm production, being considered strong producers (n = 41), moderate producers (n = 11), weak producers (n = 9) or non-producers (n = 3). In summary, C. tropicalis isolated from animals showed high rate of resistance to azoles, expressed virulence factors and therefore may represent a potential threat to human and animal health.
There is growing interest in breeding rheas (Rhea americana) in Brazil. However, there are no data on the yeast microbiota of the gastrointestinal tract of this avian species, and the phenotypic characteristics of these yeasts are not known. Therefore, the aim of this work was to isolate Candida species from the digestive tract of rheas and to evaluate the in vitro antifungal susceptibility and secretion of phospholipases of the recovered isolates. For this purpose, 58 rheas from breeding operations in the cities of Fortaleza and Mossoró , north-eastern Brazil, were used. Samples were gathered from the oropharynx and cloaca of the animals using sterile swabs. Stool samples were collected from their pens by scraping with a scalpel blade. For the primary isolation, the material was seeded onto 2 % Sabouraud dextrose agar supplemented with chloramphenicol (0.5 g l "1
In the present study, it was sought to compare yeast microbiota of wild and captive Macrobrachium amazonicum and evaluate the antifungal susceptibility and production of virulence factors by the recovered isolates of Candida spp. Additionally, cultivation water was monitored for the presence of fungi. Overall, 26 yeast isolates belonging to three genera and seven species were obtained, out of which 24 were Candida spp., with Candida famata as the most prevalent species for both wild and captive prawns. From cultivation water, 28 isolates of filamentous fungi were obtained, with Penicillium spp., Cladosporium spp. and Aspergillus spp. as the most frequent genera. Eight out of 24 Candida spp. isolates were resistant to azole derivatives, out of which four were recovered from wild-harvested prawns. As for production of virulence factors, three (12.5%) and eight (33.3%) isolates presented phospholipase and protease activity, respectively. This is the first comparative study between wild and captive prawns and the first report on yeast microbiota of M. amazonicum. The most relevant finding was the high percentage of resistant Candida spp., including from wild individuals, which suggests the occurrence of an environmental imbalance in the area where these prawns were captured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.