A B S T R A C TRemote sensing applications in agriculture are presented as a very promising reality, but research is still needed for the correct use of spectral data. The objective of this study was to evaluate the spectral-temporal patterns of eleven wheat cultivars (Triticum aestivum L.). The experiment was conducted in Cascavel, PR, in the year 2014. With the help of the GreenSeeker and FieldSpec 4 terrestrial sensors, spectral signatures were determined and the temporal profiles of the Normalized Difference Vegetation Index (NDVI) were created. Statistical differences between wheat cultivars were analysed using analysis of variance (ANOVA) and Scott-Knott test. Grain yields obtained with INSEY (In-Season Estimate of Yield) factors were correlated. NDVI normalized by degree-days accumulated from the Feekes growth stages 2 and 8 showed to be more consistent in the estimation of grain yield, explaining approximately 70% of the variation. At the Feekes stage 10.1, wheat cultivars presented different spectral patterns in the near and medium infrared bands. This suggests that these spectral bands can be used to differentiate wheat cultivars.
In the state of Paraná, Brazil, there are no major changes in areas cultivated with annual crops, mainly due to environmental laws that do not allow expansions to new areas. There is a great contribution of the annual crops to the domestic demand of food and economic demand in the exports. Thus, the area and distribution of annual crops are information of great importance. New methodologies, such as data mining, are being tested with the objective of analyzing and improving their potential use for classification of land use and land cover. This study used the classifiers decision tree and random forest with Normalized Difference Vegetation Index (NDVI) temporal metrics on images from Operational Land Imager (OLI)/Landsat-8. The results were compared with traditional methods spectral images and Maximum Likelihood Classifier (MLC). At first, seven classes were mapped (water bodies, sugarcane, urban area, annual crops, forest, pasture and reforestation areas); then, only two classes were considered (annual crops and other targets). When classifying the seven targets, both methods had corresponding results, showing global accuracy near 84%. NDVI temporal metrics showed producer’s and user’s accuracy for the annual crop class of 86 and 100%, respectively. However, if considering only two classes, the NDVI temporal metrics reached global accuracy of near 98% and producer’s and user’s accuracy above 94%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.