The construction and use of a Tn3‐lac transposon, Tn3‐HoHo1, is described. Tn3‐HoHo1 can serve as a transposon mutagen and provides a new and useful system for the random generation of both transcriptional and translational lacZ gene fusions. In these fusions the production of beta‐galactosidase, the lacZ gene product, is placed under the control of the gene into which Tn3‐HoHo1 has inserted. The expression of the gene can thus be analyzed by monitoring beta‐galactosidase activity. Tn3‐HoHo1 carries a non‐functional transposase gene; consequently, it can transpose only if transposase activity is supplied in trans, and is stable in the absence of this activity. A system for the insertion of Tn3‐HoHo1 into sequences specifically contained within plasmids is described. The applicability of Tn3‐HoHo1 was demonstrated studying three functional regions of the Agrobacterium tumefaciens A6 Ti plasmid. These regions code for octopine catabolism, virulence and plant tumor phenotype. The regulated expression of genes contained within each of these regions was analyzed in Agrobacterium employing Tn3‐HoHo1 generated lac fusions.
Three approaches were used to study hybridization of complementary oligodeoxynucleotides by nonradiative fluorescence resonance energy transfer. (i) Fluorescein (donor) and rhodamine (acceptor) were covalently attached to the 5' ends of complementary oligodeoxynucleotides of various lengths. Upon hybridization of the complementary oligodeoxynucleotides, energy transfer was detected by both a decrease in fluorescein emission intensity and an enhancement in rhodamine emission intensity. In all cases, fluorescein emission intensity was quenched by about 26% in the presence of unlabeled complement. Transfer efficiency at 50C decreased from 0.50 to 0.22 to 0.04 as the distance between donor and acceptor fluorophores in the hybrid increased from 8 to 12 to 16 nucleotides. Modeling of these hybrids as double helices showed that transfer efficiency decreased as the reciprocal of the sixth power of the donor-acceptor separation R, as predicted by theory with a corresponding Ro of 49 A. (u) Fluorescence resonance energy transfer was used to study hybridization of two fluorophore-labeled oligonucleotides to a longer, unlabeled oligodeoxynucleotide. Two 12-mers were prepared that were complementary to two adjacent sequences separated by four bases on a 29-mer. The adjacent 5' and 3' ends of the two 12-mers labeled with fluorescein and rhodamine exhibited a transfer efficiency of -0.60 at 50C when they both hybridized to the unlabeled 29-mer. (Wi) An intercalating dye, acridine orange, was used as the donor fluorophore to a single rhodamine covalently attached to the 5' end of one oligodeoxynucleotide in a 12-base-pair hybrid. Under these conditions, the transfer efficiency was =0.47 at 50C. These results establish that fluorescence modulation and nonradiative fluorescence resonance energy transfer can detect nucleic acid hybridization in solution. These techniques, with further development, may also prove useful for detecting and quantifying nucleic acid hybridization in living cells.In this paper we describe how fluorescently labeled oligodeoxynucleotides (ODNTs) and the process of nonradiative fluorescence resonance energy transfer (FRET) can be used to study nucleic acid hybridization. When two fluorophores whose excitation and emission spectra overlap are in sufficiently close proximity, the excited-state energy of the donor molecule is transferred by a resonance dipole-induced dipole interaction to the neighboring acceptor fluorophore. The results are a decrease in donor lifetime, a quenching of donor fluorescence, an enhancement of acceptor fluorescence intensity, and a depolarization of fluorescence intensity. The efficiency of energy transfer, Et, falls off rapidly with the distance between donor and acceptor molecule, R, and is expressed as Et = 1/[1 + (R/R0)6], [1] where Ro is a value that depends upon the overlap integral of the donor emission spectrum and the acceptor excitation spectrum, the index of refraction, the quantum yield of the donor, and the orientation of the donor emission and the acce...
Double-strand DNA breaks can be repaired by any of several alternative mechanisms that differ greatly in the nature of the final repaired products. We used a reporter construct, designated ''Repair reporter 3'' (Rr3), to measure the relative usage of these pathways in Drosophila germ cells. The method works by creating a double-strand break at a specific location such that expression of the red fluorescent protein, DsRed, in the next generation can be used to infer the frequency at which each pathway was used. A key feature of this approach is that most data come from phenotypic scoring, thus allowing large sample sizes and considerable precision in measurements. Specifically, we measured the proportion of breaks repaired by (1) conversion repair, (2) nonhomologous end joining (NHEJ), or (3) single-strand annealing (SSA). For conversion repair, the frequency of mitotic crossing over in the germ line indicates the relative prevalence of repair by double Holliday junction (DHJ) formation vs. the synthesis-dependent strand annealing (SDSA) pathway. We used this method to show that breaks occurring early in germ-line development were much more frequently repaired via single-strand annealing and much less likely to be repaired by end joining compared with identical breaks occurring later in development. Conversion repair was relatively rare when breaks were made either very early or very late in development, but was much more frequent in between. Significantly, the changes in relative usage occurred in a compensatory fashion, such that an increase in one pathway was accompanied by decreases in others. This negative correlation is interpreted to mean that the pathways for double-strand break repair compete with each other to handle a given breakage event.
The MRN complex consists of the two evolutionarily conserved components Mre11 and Rad50 and the third less-conserved component Nbs1/Xrs2. This complex mediates telomere maintenance in addition to a variety of functions in response to DNA double-strand breaks, including homologous recombination, nonhomologous end joining (NHEJ), and activation of DNA damage checkpoints. Mutations in the Mre11 gene cause the human ataxia-telangiectasia-like disorder (ATDL). Here, we show that null mutations in the Drosophila mre11 and rad50 genes cause both telomeric fusion and chromosome breakage. Moreover, we demonstrate that these mutations are in the same epistasis group required for telomere capping and mitotic chromosome integrity. Using an antibody against Rad50, we show that this protein is uniformly distributed along mitotic chromosomes, and that Rad50 is unstable in the absence of its binding partner Mre11. To define the roles of rad50 and mre11 in telomere protection, mutant chromosome preparations were immunostained for both HP1 and HOAP, two proteins that protect Drosophila telomeres from fusion. Cytological analysis revealed that mutations in rad50 and mre11 drastically reduce accumulation of HOAP and HP1 at telomeres. This suggests that the MRN complex protects Drosophila telomeres by facilitating recruitment of HOAP and HP1 at chromosome ends.
The completed fruit fly genome was found to contain up to 15 putative UDP-N-acetyl-␣-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase (GalNAc-transferase) genes. Phylogenetic analysis of the putative catalytic domains of the large GalNAc-transferase enzyme families of Drosophila melanogaster (13 available), Caenorhabditis elegans (9 genes), and mammals (12 genes) indicated that distinct subfamilies of orthologous genes are conserved in each species. In support of this hypothesis, we provide evidence that distinctive functional properties of Drosophila and human GalNAc-transferase isoforms were exhibited by evolutionarily conserved members of two subfamilies (dGalNAc-T1 (l(2)35Aa) and GalNAc-T11; dGalNAc-T2 (CG6394) and GalNAc-T7). dGalNAc-T1 and novel human GalNAc-T11 were shown to encode functional GalNActransferases with the same polypeptide acceptor substrate specificity, and dGalNAc-T2 was shown to encode a GalNAc-transferase with similar GalNAc glycopeptide substrate specificity as GalNAc-T7. Previous data suggested that the putative GalNAc-transferase encoded by l(2)35Aa had a lethal phenotype (Flores, C., and Engels, W. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 2964-2969), and this was substantiated by sequencing of three lethal alleles l(2)35Aa HG8
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.