Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
In recent years, different deep learning techniques were applied to segment aerial and satellite images. Nevertheless, state of the art techniques for land cover segmentation does not provide accurate results to be used in real applications. This is a problem faced by institutions and companies that want to replace time-consuming and exhausting human work with AI technology. In this work, we propose a method that combines deep learning with a human-in-the-loop strategy to achieve expert-level results at a low cost. We use a neural network to segment the images. In parallel, another network is used to measure uncertainty for predicted pixels. Finally, we combine these neural networks with a human-in-the-loop approach to produce correct predictions as if developed by human photointerpreters. Applying this methodology shows that we can increase the accuracy of land cover segmentation tasks while decreasing human intervention.
Este trabajo hace una aproximación al proceso de producción de noticias de dos periódicos de circulación nacional y medios de comunicación estatal de El Salvador, identifica la frecuencia con que reciben quejas, comentarios o interrogantes de las audiencias, cómo están organizados para atender las mismas y establece causas por las que no cuentan con un ombudsman. Surge como producto de dos investigaciones que han tenido como objetivo conocer la existencia de transparencia en la producción de noticias; la primera, realizada en dos periódicos impresos, y la segunda, en los medios estatales de comunicación. Todos los medios abordados cuentan con una jerarquía para decidir qué se publica, no promueven la participación de sus audiencias, atienden con prontitud las peticiones de rectificación o respuesta, pese a que ninguno tiene dicho procedimiento por escrito, y no cuentan con un ombudsman los periódicos por razones económicas y los medios estatales por falta de voluntad política.Realidad: Revista de Ciencias Sociales y Humanidades No. 149, 2017: 121-145
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.