A record low-repetition rate from an on-chip monolithic InP extended cavity colliding-pulse mode-locked laser is experimentally reported. The device, fabricated in generic InP-based active-passive integration technology, makes use of integrated mirrors to enable its use as a building block within a photonic integrated circuit. This structure allows us to generate an electrical frequency comb with mode spacing of 1 GHz, determined by the 40.5 mm long resonator. Passive and hybrid mode-locking regime conditions are experimentally demonstrated. In the passive regime, an electrical beat tone at the fundamental repetition rate with an electrical linewidth (LW) of 398 kHz and a signal-to-noise ratio (SNR) >30 dB is measured. In the hybrid regime, the optical comb is locked to a continuous wave signal source, improving the LW of the generated signal and the SNR>40 dB.
We report the achievement of colliding pulse mode-locked (CPM) regimes on a novel on-chip mode locked laser diode (OCCP-MLLD). The advantage of the resonator structure that we present is that the end-mirrors are defined through multimode interference reflectors (MIRs), which provide precise control of the cavity length avoiding the need for cleaved facets. This simplifies positioning the saturable absorber at the center of the resonator to achieve the colliding pulse mode-locked regime and double the repetition rate, reaching the millimeter wave frequency range. An additional advantage is that the pulsed output is delivered within the Photonic Integrated Circuit chip for further processing (i.e. modulation). We demonstrate a colliding pulse passive mode locked regime with pulse widths below a picosecond (Δτ = 0.64 ps), timing jitter σT = 75 fs and amplitude noise NAM = 0.012 dBc. The samples were fabricated in a generic InP foundry service through multi-project wafer (MPW) runs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.