Stress fractures can occur in almost any bone in the body, with the lower extremity weightbearing bones, especially the tibia, tarsals, and metatarsals, being affected most frequently. Although the cause of these fractures is multifactoral, repetitive physical forces without adequate rest are the primary culprits. Stress fractures may be broadly classified as low-risk or high-risk injuries. Low-risk stress fractures, the topic of this review article, can be diagnosed through a thorough history, physical examination, and radiographs. Nuclear scintigraphy is occasionally necessary for confirmation, especially for fractures of the spine and pelvis. When diagnosed early and treated with restriction of activity, low-risk stress fractures have a favorable prognosis.
Climate change is causing an increase in the frequency and intensity of marine heatwaves (MHWs) and mass mortality events (MMEs) of marine organisms are one of their main ecological impacts. Here, we show that during the 2015-2019 period, the Mediterranean Sea has experienced exceptional thermal conditions resulting in the onset of five consecutive years of widespread MMEs across the basin. These MMEs affected thousands of kilometers of coastline from the surface to 45 m, across a range of marine habitats and taxa (50 taxa across 8 phyla). Significant relationships were found between the incidence of MMEs and the heat exposure associated with MHWs observed both at the surface and across depths. Our findings reveal that the Mediterranean Sea is experiencing an acceleration of the ecological impacts of MHWs which poses an unprecedented threat to its ecosystems' health and functioning.
Editor’s note: For easy download the posted pdf of the State of the Climate for 2019 is a low-resolution file. A high-resolution copy of the report is available by clicking here. Please be patient as it may take a few minutes for the high-resolution file to download.
Editor’s note: For easy download the posted pdf of the State of the Climate for 2017 is a low-resolution file. A high-resolution copy of the report is available by clicking here. Please be patient as it may take a few minutes for the high-resolution file to download.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.