The relationship between the basic reproduction number R 0 and the exponential growth rate, specific to pair approximation models, is derived for the SIS, SIR and SEIR deterministic models without demography. These models are extended by including a random rewiring of susceptible individuals from infectious (and exposed) neighbours. The derived relationship between the intrinsic growth rate and R 0 appears as formally consistent with those derived from homogeneous mixing models, enabling us to measure the transmission potential using the early growth rate of cases. On the other hand, the algebraic expression of R 0 for the SEIR pairwise model shows that its value is affected by the average duration of the latent period, in contrast to what happens for the homogeneous mixing SEIR model. Numerical simulations on complex contact networks are performed to check the analytical assumptions and predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.