Tick saliva serine protease inhibitors (serpins) facilitate tick blood meal feeding through inhibition of protease mediators of host defense pathways. We previously identified a highly conserved Amblyomma americanum serpin (AAS) 19 that is characterized by its reactive center loop being 100% conserved in ixodid ticks. In this study, biochemical characterization reveals that the ubiquitously transcribed AAS19 is an anti-coagulant protein, inhibiting the activity of five of the eight serine protease blood clotting factors. Pichia pastoris-expressed recombinant (r) AAS19 inhibits the enzyme activity of trypsin, plasmin and blood clotting factors (f) Xa and XIa, with stoichiometry of inhibition estimated at 5.1, 9.4, 23.8 and 28, respectively. Similar to typical inhibitory serpins, rAAS19 forms irreversible complexes with trypsin, fXa and fXIa. At a higher molar excess of rAAS19, fXIIa is inhibited by 82.5%, and thrombin (fIIa), fIXa, chymotrypsin and tryptase are inhibited moderately by 14 – 29%. In anti-hemostatic functional assays, rAAS19 inhibits thrombin but not ADP and cathepsin G activated platelet aggregation, delays clotting in recalcification and thrombin time assays by up to 250 s, and up to 40 s in the activated partial thromboplastin time assay. Given AAS19 high cross-tick species conservation, and specific reactivity of rAAS19 with antibodies to A. americanum tick saliva proteins, we conclude that rAAS19 is a potential candidate for development of a universal tick vaccine.
An aspartic proteinase that binds heme with a 1:1 stoichiometry was isolated and cloned from the eggs of the cattle tick Boophilus microplus. This proteinase, herein named THAP (tick heme-binding aspartic proteinase) showed pepstatin-sensitive hydrolytic activity against several peptide and protein substrates. Although hemoglobin was a good substrate for THAP, low proteolytic activity was observed against globin devoid of the heme prosthetic group. Hydrolysis of globin by THAP increased as increasing amounts of heme were added to globin, with maximum activation at a heme-toglobin 1:1 ratio. Further additions of heme to the reaction medium inhibited proteolysis, back to a level similar to that observed against globin alone. The addition of heme did not change THAP activity toward a synthetic peptide or against ribonuclease, a non-hemeprotein substrate. The major storage protein of tick eggs, vitellin (VT), the probable physiological substrate of THAP, is a hemeprotein. Hydrolysis of VT by THAP was also inhibited by the addition of heme to the incubation media. Taken together, our results suggest that THAP uses heme bound to VT as a docking site to increase specificity and regulate VT degradation according to heme availability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.