Cystic fibrosis is mostly caused by the F508del mutation, which impairs CFTR protein from exiting the endoplasmic reticulum due to misfolding. VX-809 is a small molecule that rescues F508del-CFTR localization, which recently went into clinical trial but with unknown mechanism of action (MoA). Herein, we assessed if VX-809 is additive or synergistic with genetic revertants of F508del-CFTR, other correctors, and low temperature to determine its MoA. We explored and integrated those various agents in combined treatments, showing how they add to each other to identify their complementary MoA upon correction of F508del-CFTR. Our experimental and modeling data, while compatible with putative binding of VX-809 to NBD1:ICL4 interface, also indicate scope for further synergistic F508del-CFTR correction by other compounds at distinct conformational sites/cellular checkpoints, thus suggesting requirement of combined therapies to fully rescue F508del-CFTR.
Biosynthesis and folding of multidomain transmembrane proteins is a complex process. Structural fidelity is monitored by endoplasmic reticulum (ER) quality control involving the molecular chaperone calnexin. Retained misfolded proteins undergo ER-associated degradation (ERAD) through the ubiquitin-proteasome pathway. Our data show that the major degradation pathway of the cystic fibrosis transmembrane conductance regulator (CFTR) with F508del (the most frequent mutation found in patients with the genetic disease cystic fibrosis) from the ER is independent of calnexin. Moreover, our results demonstrate that inhibition of mannose-processing enzymes, unlike most substrate glycoproteins, does not stabilize F508del-CFTR, although wild-type (wt) CFTR is drastically stabilized under the same conditions. Together, our data support a novel model by which wt and F508del-CFTR undergo ERAD from two distinct checkpoints, the mutant being disposed of independently of N-glycosidic residues and calnexin, probably by the Hsc70/Hsp70 machinery, and wt CFTR undergoing glycan-mediated ERAD.
The CFTR (cystic fibrosis transmembrane conductance regulator) gene, defective in cystic fibrosis, codes for a polytopic apical membrane protein functioning as a chloride channel. Wild-type (wt) CFTR matures inefficiently and CFTR with a deletion of Phe-508 (F508del), the most frequent mutation, is substantially retained as a core-glycosylated intermediate in the endoplasmic reticulum (ER), probably due to misfolding that is recognized by the cellular quality control machinery involving molecular chaperones. Here, we overexpressed the heat-shock protein (Hsp) 70 chaperone in vivo and observed no changes in degradation rate of the core-glycosylated form, nor in the efficiency of its conversion into the fully glycosylated form, for either wt- or F508del-CFTR, contrary to previous in vitro studies on the affect of heat-shock cognate (Hsc) 70 on part of the first nucleotide-binding domain of CFTR. Co-transfection of Hsp70 with its co-chaperone human DnaJ homologue (Hdj)-1/Hsp40, however, stabilizes the immature form of wt-CFTR, but not of F508del-CFTR, suggesting that these chaperones act on a wt-specific conformation. As the efficiency of conversion into the fully glycosylated form is not increased under Hsp70/Hdj-1 overexpression, the lack of these two chaperones does not seem to be critical for CFTR maturation and ER retention. The effects of 4-phenylbutyrate and deoxyspergualin, described previously to interfere with Hsp70 binding, were also tested upon CFTR degradation and processing. The sole effect observed was destabilization of F508del-CFTR.
SUMMARY:Present state of knowledge, mostly based on heterologous expression studies, indicates that the cystic fibrosis transmembrane conductance regulator (CFTR) protein bearing the F508del mutation is misprocessed and mislocalized in the cytoplasm, unable to reach the cell surface. Recently, however, it was described that protein levels and localization are similar between F508del and wild-type CFTR in airway and intestinal tissues, but not in the sweat glands. In this study, we used immunocytochemistry with three different anti-CFTR antibodies to investigate endogenous CFTR expression and localization in nasal epithelial cells from F508del homozygous patients, F508del carriers, and non-CF individuals. On average, 300 cells were observed per individual. No significant differences were observed for cell type distributions among CF, carrier, and non-CF samples; epithelial cells made up approximately 80% to 95% of all cells present. CFTR was detected mostly in the apical region (AR) of the tall columnar epithelial (TCE) cells, ciliated or nonciliated. By confocal microscopy analysis, we show that the CFTR apical region-staining does not overlap with either anti-calnexin (endoplasmic reticulum), anti-p58 (Golgi), or anti-tubulin (cilia) stainings. The median from results with three antibodies indicate that the apical localization of CFTR happens in 22% of TCE cells from F508del homozygous patients with CF (n ϭ 12), in 42% of cells from F508del carriers (n ϭ 20), and in 56% of cells from healthy individuals (n ϭ 12). Statistical analysis indicates that differences are significant among all groups studied and for the three antibodies (p Ͻ 0.05). These results confirm the presence of CFTR in the apical region of airway cells from F508del homozygous patients; however, they also reveal that the number of cells in which this occurs is significantly lower than in F508del carriers and much lower than in healthy individuals. These findings may have an impact on the design of novel pharmacological strategies aimed at circumventing the CF defect caused by the F508del mutation. (Lab Invest 2000, 80:857-868).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.