The CFTR (cystic fibrosis transmembrane conductance regulator) gene, defective in cystic fibrosis, codes for a polytopic apical membrane protein functioning as a chloride channel. Wild-type (wt) CFTR matures inefficiently and CFTR with a deletion of Phe-508 (F508del), the most frequent mutation, is substantially retained as a core-glycosylated intermediate in the endoplasmic reticulum (ER), probably due to misfolding that is recognized by the cellular quality control machinery involving molecular chaperones. Here, we overexpressed the heat-shock protein (Hsp) 70 chaperone in vivo and observed no changes in degradation rate of the core-glycosylated form, nor in the efficiency of its conversion into the fully glycosylated form, for either wt- or F508del-CFTR, contrary to previous in vitro studies on the affect of heat-shock cognate (Hsc) 70 on part of the first nucleotide-binding domain of CFTR. Co-transfection of Hsp70 with its co-chaperone human DnaJ homologue (Hdj)-1/Hsp40, however, stabilizes the immature form of wt-CFTR, but not of F508del-CFTR, suggesting that these chaperones act on a wt-specific conformation. As the efficiency of conversion into the fully glycosylated form is not increased under Hsp70/Hdj-1 overexpression, the lack of these two chaperones does not seem to be critical for CFTR maturation and ER retention. The effects of 4-phenylbutyrate and deoxyspergualin, described previously to interfere with Hsp70 binding, were also tested upon CFTR degradation and processing. The sole effect observed was destabilization of F508del-CFTR.
SUMMARY:Present state of knowledge, mostly based on heterologous expression studies, indicates that the cystic fibrosis transmembrane conductance regulator (CFTR) protein bearing the F508del mutation is misprocessed and mislocalized in the cytoplasm, unable to reach the cell surface. Recently, however, it was described that protein levels and localization are similar between F508del and wild-type CFTR in airway and intestinal tissues, but not in the sweat glands. In this study, we used immunocytochemistry with three different anti-CFTR antibodies to investigate endogenous CFTR expression and localization in nasal epithelial cells from F508del homozygous patients, F508del carriers, and non-CF individuals. On average, 300 cells were observed per individual. No significant differences were observed for cell type distributions among CF, carrier, and non-CF samples; epithelial cells made up approximately 80% to 95% of all cells present. CFTR was detected mostly in the apical region (AR) of the tall columnar epithelial (TCE) cells, ciliated or nonciliated. By confocal microscopy analysis, we show that the CFTR apical region-staining does not overlap with either anti-calnexin (endoplasmic reticulum), anti-p58 (Golgi), or anti-tubulin (cilia) stainings. The median from results with three antibodies indicate that the apical localization of CFTR happens in 22% of TCE cells from F508del homozygous patients with CF (n ϭ 12), in 42% of cells from F508del carriers (n ϭ 20), and in 56% of cells from healthy individuals (n ϭ 12). Statistical analysis indicates that differences are significant among all groups studied and for the three antibodies (p Ͻ 0.05). These results confirm the presence of CFTR in the apical region of airway cells from F508del homozygous patients; however, they also reveal that the number of cells in which this occurs is significantly lower than in F508del carriers and much lower than in healthy individuals. These findings may have an impact on the design of novel pharmacological strategies aimed at circumventing the CF defect caused by the F508del mutation. (Lab Invest 2000, 80:857-868).
BACKGROUNDSuccessful gametogenesis requires the establishment of an appropriate epigenetic state in developing germ cells. Nevertheless, an association between abnormal spermatogenesis and epigenetic disturbances in germline-specific genes remains to be demonstrated.METHODSIn this study, the DNA methylation pattern of the promoter CpG island (CGI) of two germline regulator genes—DAZL and DAZ, was characterized by bisulphite genomic sequencing in quality-fractioned ejaculated sperm populations from normozoospermic (NZ) and oligoasthenoteratozoospermic (OAT) men.RESULTSOAT patients display increased methylation defects in the DAZL promoter CGI when compared with NZ controls. Such differences are recorded when analyzing sperm fractions enriched either in normal or defective germ cells (P< 0.001 in both cases). Significant differences in DNA methylation profiles are also observable when comparing the qualitatively distinct germ cell fractions inside the NZ and OAT groups (P= 0.003 and P= 0.007, respectively). Contrastingly, the unmethylation pattern of the DAZ promoter CGI remains correctly established in all experimental groups.CONCLUSIONSAn association between disrupted DNA methylation of a key spermatogenesis gene and abnormal human sperm is described here for the first time. These results suggest that incorrect epigenetic marks in germline genes may be correlated with male gametogenic defects.
Introduction: Portugal is experiencing the effects of the COVID-19 pandemic since March 2020. All-causes mortality in Portugal increased during March and April 2020 compared to previous years, but this increase is not explained by COVID-19 reported deaths. The aim of this study was to analyze and consider other criteria for estimating excessive all-causes mortality during the early COVID-19pandemic period.Material and Methods: Public data was used to estimate excess mortality by age and region between March 1 and April 22, proposing baselines adjusted for the lockdown period.Results: Despite the inherent uncertainty, it is safe to assume an observed excess mortality of 2400 to 4000 deaths. Excess mortality was associated with older age groups (over age 65).Discussion: The data suggests a ternary explanation for early excess mortality: COVID-19, non-identified COVID-19 and decrease in access to healthcare. The estimates have implications in terms of communication of non-pharmaceutical actions, for research, and to healthcare professionals.Conclusion: The excess mortality occurred between March 1 and April 22 was 3.5- to 5-fold higher than what can be explained by the official COVID-19 deaths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.