The bit independence criterion was proposed to evaluate the security of the S-boxes used in block ciphers. This paper proposes an algorithm that extends this criterion to evaluate the degree of independence between the bits of inputs and outputs of the stream ciphers. The effectiveness of the algorithm is experimentally confirmed in two scenarios: random outputs independent of the input, in which it does not detect dependence, and in the RC4 ciphers, where it detects significant dependencies related to some known weaknesses. The complexity of the algorithm is estimated based on the number of inputs l, and the dimensions, n and m, of the inputs and outputs, respectively.
Entropy makes it possible to measure the uncertainty about an information source from the distribution of its output symbols. It is known that the maximum Shannon’s entropy of a discrete source of information is reached when its symbols follow a Uniform distribution. In cryptography, these sources have great applications since they allow for the highest security standards to be reached. In this work, the most effective estimator is selected to estimate entropy in short samples of bytes and bits with maximum entropy. For this, 18 estimators were compared. Results concerning the comparisons published in the literature between these estimators are discussed. The most suitable estimator is determined experimentally, based on its bias, the mean square error short samples of bytes and bits.
The search of bijective n×n S-boxes resilient to power attacks in the space of dimension (2n)! is a controversial topic in the cryptology community nowadays. This paper proposes partitioning the space of (2n)! S-boxes into equivalence classes using the hypothetical power leakage according to the Hamming weights model, which ensures a homogeneous theoretical resistance within the class against power attacks. We developed a fast algorithm to generate these S-boxes by class. It was mathematically demonstrated that the theoretical metric confusion coefficient variance takes constant values within each class. A new search strategy—jumping over the class space—is justified to find S-boxes with high confusion coefficient variance in the space partitioned by Hamming weight classes. In addition, a decision criterion is proposed to move quickly between or within classes. The number of classes and the number of S-boxes within each class are calculated, showing that, as n increases, the class space dimension is an ever-smaller fraction of the space of S-boxes, which significantly reduces the space of search of S-boxes resilient to power attacks, when the search is performed from class to class.
In the last three decades, the RC4 has been the most cited stream cipher, due to a large amount of research carried out on its operation. In this sense, dissimilar works have been presented on its performance, security, and usability. One of the distinguishing features that stand out the most is the sheer number of RC4 variants proposed. Recently, a weakness has been reported regarding the existence of statistical dependence between the inputs and outputs of the RC4, based on the use of the strict avalanche criterion and the bit independence criterion. This work analyzes the influence of this weakness in some of its variants concerning RC4. The five best-known variants of RC4 were compared experimentally and classified into two groups according to the presence or absence of such a weakness.
Many research focuses on find S-boxes with good cryptographic properties applying a heuristic method and a balanced, objective function. The design of S-boxes with theoretical resistance against Side-Channel Attacks by power consumption is addressed with properties defined under one of these two models: the Hamming Distance leakage model and the Hamming Weight leakage model. As far as we know, a balanced search criterion that considers properties under both, at the same time, remains an open problem. We define two new optimal objective functions that can be used to obtain S-boxes with good cryptographic properties values, keeping high theoretical resistance for the two leakage models; we encourage using at least one of our objective functions. We apply a Hill Climbing heuristic method over the S-box's space to measure which objective function is better and to compare the obtained S-boxes with the S-boxes in the actual literature. We also confirm some key relationships between the properties and which property is more suitable to be used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.