Molecular discovery seeks to generate chemical species tailored to very specific needs. In this paper, we present ORGANIC, a framework based on Objective-Reinforced Generative Adversarial Networks (ORGAN), capable of producing a distribution over molecular space that matches with a certain set of desirable metrics. This methodology combines two successful techniques from the machine learning community: a Generative Adversarial Network (GAN), to create non-repetitive sensible molecular species, and Reinforcement Learning (RL), to bias this generative distribution towards certain attributes. We explore several applications, from optimization of random physicochemical properties to candidates for drug discovery and organic photovoltaic material design.
Quantum mechanical bond orders are obtained from integration of the exchange–correlation density between topological atoms.
Quantum computers can in principle solve certain problems exponentially more quickly than their classical counterparts. We have not yet reached the advent of useful quantum computation, but when we do, it will affect nearly all scientific disciplines. In this review, we examine how current quantum algorithms could revolutionize computational biology and bioinformatics. There are potential benefits across the entire field, from the ability to process vast amounts of information and run machine learning algorithms far more efficiently, to algorithms for quantum simulation that are poised to improve computational calculations in drug discovery, to quantum algorithms for optimization that may advance fields from protein structure prediction to network analysis. However, these exciting prospects are susceptible to "hype," and it is also important to recognize the caveats and challenges in this new technology.Our aim is to introduce the promise and limitations of emerging quantum computing technologies in the areas of computational molecular biology and bioinformatics. This article is categorized under: Structure and Mechanism > Computational Biochemistry and Biophysics Data Science > Computer Algorithms and Programming Electronic Structure Theory > Ab Initio Electronic Structure Methods K E Y W O R D S ab initio simulations, machine learning, optimization, protein folding, quantum computingand X-ray diffraction data processing [10,11]. Despite such progress, many challenges in biology remain computationally infeasible. The best algorithms for problems like predicting the folding of a protein, calculating the binding affinity of a ligand for a macromolecule, or finding optimal large-scale genomic alignments require computational resources that are beyond even the most powerful supercomputers of our era.The solution to these challenges may lie in a paradigm shift in computing. In the 1980s, Richard Feynman [12] and, independently, Yuri Manin [13] proposed using quantum mechanical effects to build a new, more powerful generation of computers. Quantum theory has proved to be a highly successful description of physical reality, and has led, since its introduction in the early 20th century, to advances such as lasers, transistors and semiconductor microprocessors. A quantum computer would enable more effective algorithms by introducing operations that are not possible in classical machines. Quantum processors do not work faster than classical computers, but operate in a fundamentally different way, achieving unprecedented speedups by avoiding unnecessary computation. For example, computing the full electronic wavefunction of an average drug molecule numerically is expected to take longer than the age of the universe on any current supercomputer using conventional algorithms [14], while even a modest-sized quantum computer may be able to solve this in a timescale of days. Motivated by this promise of quantum advantage, the quest to build a quantum processor is ongoing. Unfortunately, the technical difficulties in manufacturi...
Predicting the native state of a protein has long been considered a gateway problem for understanding protein folding. Recent advances in structural modelling driven by deep learning have achieved unprecedented success at predicting a protein’s crystal structure, but it is not clear if these models are learning the physics of how proteins dynamically fold into their equilibrium structure or are just accurate knowledge-based predictors of the final state. In this work, we compare the pathways generated by state-of-the-art protein structure prediction methods to experimental data about protein folding pathways. The methods considered were AlphaFold 2, RoseTTAFold, trRosetta, RaptorX, DMPfold, EVfold, SAINT2 and Rosetta. We find evidence that their simulated dynamics capture some information about the folding pathway, but their predictive ability is worse than a trivial classifier using sequence-agnostic features like chain length. The folding trajectories produced are also uncorrelated with experimental observables such as intermediate structures and the folding rate constant. These results suggest that recent advances in structure prediction do not yet provide an enhanced understanding of protein folding. Supplementary information Supplementary data are available at Bioinformatics online.
The Membranome database provides comprehensive structural information on single‐pass (i.e., bitopic) membrane proteins from six evolutionarily distant organisms, including protein–protein interactions, complexes, mutations, experimental structures, and models of transmembrane α‐helical dimers. We present a new version of this database, Membranome 3.0, which was significantly updated by revising the set of 5,758 bitopic proteins and incorporating models generated by AlphaFold 2 in the database. The AlphaFold models were parsed into structural domains located at the different membrane sides, modified to exclude low‐confidence unstructured terminal regions and signal sequences, validated through comparison with available experimental structures, and positioned with respect to membrane boundaries. Membranome 3.0 was re‐developed to facilitate visualization and comparative analysis of multiple 3D structures of proteins that belong to a specified family, complex, biological pathway, or membrane type. New tools for advanced search and analysis of proteins, their interactions, complexes, and mutations were included. The database is freely accessible at https://membranome.org/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.