Therapeutic mAbs must not only bind to their target but must also be free from “developability issues” such as poor stability or high levels of aggregation. While small-molecule drug discovery benefits from Lipinski’s rule of five to guide the selection of molecules with appropriate biophysical properties, there is currently no in silico analog for antibody design. Here, we model the variable domain structures of a large set of post-phase-I clinical-stage antibody therapeutics (CSTs) and calculate in silico metrics to estimate their typical properties. In each case, we contextualize the CST distribution against a snapshot of the human antibody gene repertoire. We describe guideline values for five metrics thought to be implicated in poor developability: the total length of the complementarity-determining regions (CDRs), the extent and magnitude of surface hydrophobicity, positive charge and negative charge in the CDRs, and asymmetry in the net heavy- and light-chain surface charges. The guideline cutoffs for each property were derived from the values seen in CSTs, and a flagging system is proposed to identify nonconforming candidates. On two mAb drug discovery sets, we were able to selectively highlight sequences with developability issues. We make available the Therapeutic Antibody Profiler (TAP), a computational tool that builds downloadable homology models of variable domain sequences, tests them against our five developability guidelines, and reports potential sequence liabilities and canonical forms. TAP is freely available atopig.stats.ox.ac.uk/webapps/sabdab-sabpred/TAP.php.
Computational modeling of antibody structures plays a critical role in therapeutic antibody design. Several antibody modeling pipelines exist, but no freely available methods currently model nanobodies, provide estimates of expected model accuracy, or highlight potential issues with the antibody's experimental development. Here, we describe our automated antibody modeling pipeline, ABodyBuilder, designed to overcome these issues. The algorithm itself follows the standard 4 steps of template selection, orientation prediction, complementarity-determining region (CDR) loop modeling, and side chain prediction. ABodyBuilder then annotates the ‘confidence’ of the model as a probability that a component of the antibody (e.g., CDRL3 loop) will be modeled within a root–mean square deviation threshold. It also flags structural motifs on the model that are known to cause issues during in vitro development. ABodyBuilder was tested on 4 separate datasets, including the 11 antibodies from the Antibody Modeling Assessment–II competition. ABodyBuilder builds models that are of similar quality to other methodologies, with sub–Angstrom predictions for the ‘canonical’ CDR loops. Its ability to model nanobodies, and rapidly generate models (∼30 seconds per model) widens its potential usage. ABodyBuilder can also help users in decision–making for the development of novel antibodies because it provides model confidence and potential sequence liabilities. ABodyBuilder is freely available at http://opig.stats.ox.ac.uk/webapps/abodybuilder.
Quantum computers can in principle solve certain problems exponentially more quickly than their classical counterparts. We have not yet reached the advent of useful quantum computation, but when we do, it will affect nearly all scientific disciplines. In this review, we examine how current quantum algorithms could revolutionize computational biology and bioinformatics. There are potential benefits across the entire field, from the ability to process vast amounts of information and run machine learning algorithms far more efficiently, to algorithms for quantum simulation that are poised to improve computational calculations in drug discovery, to quantum algorithms for optimization that may advance fields from protein structure prediction to network analysis. However, these exciting prospects are susceptible to "hype," and it is also important to recognize the caveats and challenges in this new technology.Our aim is to introduce the promise and limitations of emerging quantum computing technologies in the areas of computational molecular biology and bioinformatics. This article is categorized under: Structure and Mechanism > Computational Biochemistry and Biophysics Data Science > Computer Algorithms and Programming Electronic Structure Theory > Ab Initio Electronic Structure Methods K E Y W O R D S ab initio simulations, machine learning, optimization, protein folding, quantum computingand X-ray diffraction data processing [10,11]. Despite such progress, many challenges in biology remain computationally infeasible. The best algorithms for problems like predicting the folding of a protein, calculating the binding affinity of a ligand for a macromolecule, or finding optimal large-scale genomic alignments require computational resources that are beyond even the most powerful supercomputers of our era.The solution to these challenges may lie in a paradigm shift in computing. In the 1980s, Richard Feynman [12] and, independently, Yuri Manin [13] proposed using quantum mechanical effects to build a new, more powerful generation of computers. Quantum theory has proved to be a highly successful description of physical reality, and has led, since its introduction in the early 20th century, to advances such as lasers, transistors and semiconductor microprocessors. A quantum computer would enable more effective algorithms by introducing operations that are not possible in classical machines. Quantum processors do not work faster than classical computers, but operate in a fundamentally different way, achieving unprecedented speedups by avoiding unnecessary computation. For example, computing the full electronic wavefunction of an average drug molecule numerically is expected to take longer than the age of the universe on any current supercomputer using conventional algorithms [14], while even a modest-sized quantum computer may be able to solve this in a timescale of days. Motivated by this promise of quantum advantage, the quest to build a quantum processor is ongoing. Unfortunately, the technical difficulties in manufacturi...
Complementarity-determining regions (CDRs) are antibody loops that make up the antigen binding site. Here, we show that all CDR types have structurally similar loops of different lengths. Based on these findings, we created length-independent canonical classes for the non-H3 CDRs. Our length variable structural clusters show strong sequence patterns suggesting either that they evolved from the same original structure or result from some form of convergence. We find that our length-independent method not only clusters a larger number of CDRs, but also predicts canonical class from sequence better than the standard length-dependent approach.To demonstrate the usefulness of our findings, we predicted cluster membership of CDR-L3 sequences from 3 next-generation sequencing datasets of the antibody repertoire (over 1,000,000 sequences). Using the length-independent clusters, we can structurally classify an additional 135,000 sequences, which represents a ∼20% improvement over the standard approach. This suggests that our length-independent canonical classes might be a highly prevalent feature of antibody space, and could substantially improve our ability to accurately predict the structure of novel CDRs identified by next-generation sequencing.
The Therapeutic Structural Antibody Database (Thera-SAbDab; http://opig.stats.ox.ac.uk/webapps/therasabdab) tracks all antibody- and nanobody-related therapeutics recognized by the World Health Organisation (WHO), and identifies any corresponding structures in the Structural Antibody Database (SAbDab) with near-exact or exact variable domain sequence matches. Thera-SAbDab is synchronized with SAbDab to update weekly, reflecting new Protein Data Bank entries and the availability of new sequence data published by the WHO. Each therapeutic summary page lists structural coverage (with links to the appropriate SAbDab entries), alignments showing where any near-matches deviate in sequence, and accompanying metadata, such as intended target and investigated conditions. Thera-SAbDab can be queried by therapeutic name, by a combination of metadata, or by variable domain sequence - returning all therapeutics that are within a specified sequence identity over a specified region of the query. The sequences of all therapeutics listed in Thera-SAbDab (461 unique molecules, as of 5 August 2019) are downloadable as a single file with accompanying metadata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.