Synopsys Head and neck (HN) cancer is one of the most common cancers worldwide. Magnetic Resonance Imaging (MRI) based diffusion and perfusion techniques enable the non-invasive assessment of tumor biology and physiology, which supplement information obtained from standard structural scans. Diffusion and perfusion MRI techniques provide novel biomarkers that can aid the monitoring pre-, during, and post-treatment stages to improve patient selection for therapeutic strategies, provide evidence for change of therapy regime, and evaluation of treatment response. This review discusses pertinent aspects of the role of diffusion and perfusion MRI and computational analysis methods in studying HN cancer.
Although elevated intraocular pressure (IOP) and age are major risk factors for glaucoma, their effects on glaucoma pathogenesis remain unclear. This study examined the onset and progression of glaucomatous changes to ocular anatomy and physiology, structural and physiological brain integrity, and visuomotor behavior in the DBA/2J mice via non-invasive tonometry, multi-parametric magnetic resonance imaging (MRI) and optokinetic assessments from 5 to 12 months of age. Using T2-weighted MRI, diffusion tensor MRI, and manganese-enhanced MRI, increasing IOP elevation at 9 and 12 months old coincided with anterior chamber deepening, altered fractional anisotropy and radial diffusivity of the optic nerve and optic tract, as well as reduced anterograde manganese transport along the visual pathway respectively in the DBA/2J mice. Vitreous body elongation and visuomotor function deterioration were observed until 9 months old, whereas axial diffusivity only decreased at 12 months old in diffusion tensor MRI. Under the same experimental settings, C57BL/6J mice only showed modest age-related changes. Taken together, these results indicate that the anterior and posterior visual pathways of the DBA/2J mice exhibit differential susceptibility to glaucomatous neurodegeneration observable by in vivo multi-modal examinations.
Glaucoma is the world’s leading cause of irreversible blindness, and falls are a major public health concern in glaucoma patients. Although recent evidence suggests the involvements of the brain toward advanced glaucoma stages, the early brain changes and their clinical and behavioral consequences remain poorly described. This study aims to determine how glaucoma may impair the brain structurally and functionally within and beyond the visual pathway in the early stages, and whether these changes can explain visuomotor impairments in glaucoma. Using multi-parametric magnetic resonance imaging, glaucoma patients presented compromised white matter integrity along the central visual pathway and around the supramarginal gyrus, as well as reduced functional connectivity between the supramarginal gyrus and the visual occipital and superior sensorimotor areas when compared to healthy controls. Furthermore, decreased functional connectivity between the supramarginal gyrus and the visual brain network may negatively impact postural control measured with dynamic posturography in glaucoma patients. Taken together, this study demonstrates that widespread structural and functional brain reorganization is taking place in areas associated with visuomotor coordination in early glaucoma. These results implicate an important central mechanism by which glaucoma patients may be susceptible to visual impairments and increased risk of falls.
International audienceSoftware systems are seen more and more as evolutive systems. At the design phase, software is constantly in adaptation by the building process itself, and at runtime, it can be adapted in response to changing conditions in the executing environment such as location or resources. Adaptation is generally difficult to specify because of its crosscutting impact on software. This article introduces an approach to unify adaptation at design and at runtime based on Aspect Oriented Modeling. Our approach proposes a unified aspect metamodel and a platform that realizes two different weaving processes to achieve design and runtime adaptations. This approach is used in a Dynamic Software Product Line which derives products that can be configured at design time and adapted at runtime in order to dynamically fit new requirements or resource changes. Such products are implemented using the Service Component Architecture and Java. Finally, we illustrate the use of our approach based on an adaptive e-shopping scenario. The main advantages of this unification are: a clear separation of concerns, the self-contained aspect model that can be weaved during the design and execution, and the platform independence guaranteed by two different types of weaving
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.