Melatonin is an endogenous indoleamine with a wide range of biological functions. In addition to modulating circadian rhythms, it plays important roles in the health as an antioxidant. Melatonin has also the ability to induce apoptosis in cancer cells and to enhance the antitumoral activity of chemotherapeutic agents. In this study, the effect of melatonin on hyperthermia-induced apoptosis was explored using human leukemia cells. The results demonstrate that melatonin greatly improved the cytotoxicity of hyperthermia in U937 cells. The potentiation of cell death was achieved with 1 mmol/L concentrations of the indoleamine but not with concentrations close to physiological levels in blood (1 nmol/L). This effect was associated to an enhancement of the apoptotic response, revealed by an increase in cells with hypodiploid DNA content and activation of multiple caspases (caspase-2, caspase-3, caspase-8, and caspase-9). Melatonin also increased hyperthermia-induced Bid activation as well as translocation of Bax from the cytosol to mitochondria and cytochrome c release. Hyperthermia-provoked apoptosis and potentiation by melatonin were abrogated by a broad-spectrum caspase inhibitor (z-VAD-fmk) as well as by specific inhibitors against caspase-8 or caspase-3. In contrast, blocking of the mitochondrial pathway of apoptosis either with a caspase-9 inhibitor or overexpressing the anti-apoptotic protein Bcl-2 (U937/Bcl-2) reduced the number of apoptotic cells in response to hyperthermia but it was unable to suppress melatonin enhancement. Melatonin appears to modulate the apoptotic response triggered by hyperthermia in a cell type-specific manner as similar results were observed in HL-60 but not in K562 or MOLT-3 cells.
Melatonin is present in all living organisms where it displays a diversity of physiological functions. Attenuation of melanogenesis by melatonin has been reported in some mammals and also in rodent melanoma cells. However, melatonin may also stimulate melanogenesis in human melanoma cells through mechanisms that have not yet been revealed. Using the human melanoma cells SK-MEL-1 as a model, an increase in both tyrosinase activity and melanin was already observed at 24 h after melatonin treatment with maximal levels of both being detected at 72 h. This effect was associated with the induction in the expression of the enzymes involved in the synthesis of melanin. In this scenario, glycogen synthase kinase-3β seems to play a significant function since melatonin decreased its phosphorylation and preincubation with specific inhibitors of this protein kinase (lithium or BIO) reduced the expression and activity of tyrosinase. Blocking of PI3K/AKT pathway stimulated melanogenesis and the effect was suppressed by the inhibitors of glycogen synthase kinase-3β. Although melatonin is a recognized antioxidant, we found that it stimulates reactive oxygen species generation in SK-MEL-1 cells. These chemical species seem to be an important signal in activating the melanogenic process since the antioxidants N-acetyl-l-cysteine and glutathione decreased both the level and activity of tyrosinase stimulated by melatonin. Our results support the view that regulation of melanogenesis involves a cross-talk between several signaling pathways.
Reaction to the culture filtrate of Alternaria solani (Sorauer) was used as an indicator in an in vitro screening test to select lines with decreased field susceptibility to early blight from a population of 1000 putative mutants. Plantlets of cv. ÔDesire´e derived from irradiated callus of potato were inoculated in vitro with a culture filtrate of A. solani (Sorauer). Of the 45 lines selected and subsequently evaluated under conditions of natural infection in the greenhouse six showed lesser degrees of early blight infection than the cv. Desire´e control. The six lines selected in the greenhouse retained lower degrees of infection during 2 years of field trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.