SPG11 mutations are the major cause of autosomal recessive Hereditary Spastic Paraplegia. The disease has a wide phenotypic variability indicating many regions of the nervous system besides the corticospinal tract are affected. Despite this, anatomical and phenotypic characterization is restricted. In the present study, we investigate the anatomical abnormalities related to SPG11 mutations and how they relate to clinical and cognitive measures. Moreover, we aim to depict how the disease course influences the regions affected, unraveling different susceptibility of specific neuronal populations. We performed clinical and paraclinical studies encompassing neuropsychological, neuroimaging, and neurophysiological tools in a cohort of twenty-five patients and age matched controls. We assessed cortical thickness (FreeSurfer software), deep grey matter volumes (T1-MultiAtlas tool), white matter microstructural damage (DTI-MultiAtlas) and spinal cord morphometry (Spineseg software) on a 3 T MRI scan. Mean age and disease duration were 29 and 13.2 years respectively. Sixty-four percent of the patients were wheelchair bound while 84% were demented. We were able to unfold a diffuse pattern of white matter integrity loss as well as basal ganglia and spinal cord atrophy. Such findings contrasted with a restricted pattern of cortical thinning (motor, limbic and parietal cortices). Electromyography revealed motor neuronopathy affecting 96% of the probands. Correlations with disease duration pointed towards a progressive degeneration of multiple grey matter structures and spinal cord, but not of the white matter. SPG11-related hereditary spastic paraplegia is characterized by selective neuronal vulnerability, in which a precocious and widespread white matter involvement is later followed by a restricted but clearly progressive grey matter degeneration.
A BS TRACT: Background: Hereditary spastic paraplegia presents spasticity as the main clinical manifestation, reducing gait quality and producing incapacity. Management with botulinum toxin type A (BoNT-A) is not well elucidated. The objective of the current study was to evaluate the efficacy and safety of BoNT-A in patients with hereditary spastic paraplegias. Methods: This was a double-blind, randomized, placebo-controlled crossover trial. Each participant was randomly assigned to receive 1 injection session of either BoNT-A (100 IU/2 mL of Prosigne in each adductor magnus and each triceps surae) or saline 0.9% (2 mL). The primary outcome measure was change from baseline in maximal gait velocity, and secondary outcome measures included changes in gait at self-selected velocity, spasticity, muscle strength, Spastic Paraplegia Rating Scale, pain, fatigue, and subjective perception of improvement. We also looked at adverse events reported by the patients.Results: We enrolled 55 patients, 36 of whom were men and 41 with the pure phenotype. Mean age was 43 AE 13.4 years (range, 19-72 years), mean age of onset waws 27 AE 13.1 years (range, <1 to 55 yars), and mean disease duration was 17 AE 12.7 years (range, 1-62 years). Compared with baseline, we did not find significant differences between groups in primary and secondary outcomes, except for reduction in adductor tone (P = 0.01). The adverse events were transient and tolerable, and their incidence did not significantly differ between treatments (P = 0.17). Conclusions: BoNT-A was safe in patients with hereditary spastic paraplegias and reduced the adductor tone, but it was not able to produce functional improvement considering the doses, injection protocol, measures, and instruments used.
Background: Molecular imaging has proven to be a powerful tool to elucidate degenerated paths in a wide variety of neurological diseases and has not been systematically studied in hereditary spastic paraplegias. Objectives: To investigate dopaminergic degeneration in a cohort of 22 patients with hereditary spastic paraplegia attributed to SPG11 mutations and evaluate treatment response to l‐dopa. Methods: Patients and controls underwent single‐photon emission computed tomography imaging utilizing 99mTc‐TRODAT‐1 tracer. A single‐blind trial with 600 mg of l‐dopa was performed comparing UPDRS scores. Results: Reduced dopamine transporter density was universal among patients. Nigral degeneration was symmetrical and correlated with disease duration and motor and cognitive handicap. No statistically significant benefit could be demonstrated with l‐dopa intake during the trial. Conclusion: Disruption of presynaptic dopaminergic pathways is a widespread phenomenon in patients with SPG11 mutations, even in the absence of parkinsonism. Unresponsiveness to treatment could be related to postsynaptic damage that needs to be further investigated.
Friedreich's ataxia (FDRA) is the most common inherited ataxia worldwide, caused by homozygous GAA expansions in the FXN gene. Patients usually have early onset ataxia, areflexia, Babinski sign, scoliosis and pes cavus, but at least 25 % of cases have atypical phenotypes. Disease begins after the age of 25 in occasional patients (late-onset Friedreich ataxia (LOFA)). Little is known about the frequency and clinical profile of LOFA patients. One hundred six patients with molecular confirmation of FDRA and followed in three Brazilian outpatient centers were enrolled. General demographics, GAA expansion size, age at onset, cardiac, endocrine, and skeletal manifestations were evaluated and compared between LOFA and classic FDRA (cFDRA) groups. We used Mann-Whitney and Fisher tests to compare means and proportions between groups; p values <0.05 were considered significant. LOFA accounted for 17 % (18/106) and cFDRA for 83 % (88/106) of the patients. There were 13 and 48 women in each group, respectively. LOFA patients were significantly older and had smaller GAA expansions. Clinically, LOFA group had a tendency toward lower frequency of diabetes/impaired glucose tolerance (5.8 vs. 17 %, p = 0.29) and cardiomyopathy (16.6 vs. 28.4 %, p = 0.38). Skeletal abnormalities were significantly less frequent in LOFA (scoliosis 22 vs. 61 %, p = 0.003, and pes cavus 22 vs.75 %, p < 0.001) as were spasticity and sustained reflexes, found in 22 % of LOFA patients but in none of the cFDRA patients (p = 0.001). LOFA accounts for 17 % of Brazilian FDRA patients evaluated herein. Clinically, orthopedic features and spasticity with retained reflexes are helpful tips to differentiate LOFA from cFDRA patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.