Comparing pandemic waves could aid in understanding the evolution of COVID-19. The objective of the present study was to compare the characteristics and outcomes of patients hospitalized for COVID-19 in different pandemic waves in terms of severity and mortality. We performed an observational retrospective cohort study of 5,220 patients hospitalized with SARS-CoV-2 infection from February to September 2020 in Aragon, Spain. We compared ICU admissions and 30-day mortality, clinical characteristics, and risk factors of the first and second waves of COVID-19. The SARS-CoV-2 genome was also analyzed in 236 samples. Patients in the first wave (n = 2,547) were older (median age 74 years [IQR 60–86] vs. 70 years [53–85]; p < 0.001) and had worse clinical and analytical parameters related to severe COVID-19 than patients in the second wave (n = 2,673). The probability of ICU admission at 30 days was 16% and 10% (p < 0.001) and the cumulative 30-day mortality rates 38% and 32% in the first and second wave, respectively (p = 0.007). Survival differences were observed among patients aged 60 to 80 years. We also found some variability among death risk factors and the viral genome between waves. Therefore, the two analyzed COVID-19 pandemic waves were different in terms of disease severity and mortality.
Care pathways (CPWs) are "multidisciplinary care plans that detail essential care steps for patients with specific clinical problems". While CPWs impact on health or cost outcomes is vastly studied, an in-depth analysis of the realworld implementation of the CPWs is an area that still remains underexplored. The present work describes how to apply an existing process mining methodology to construct the empirical CPW process models. These processmodels are a unique piece of information for health services research: for example to evaluate their conformance against the theoretical CPW described on clinical guidelines or to evaluate the impact of the process in health outcomes.To this purpose, this work relies on the design and implementation of a solution that a) synthesizes the expert knowledge on how health care is delivered within and across providers as an activity log, and b) constructs the CPW process model from that activity log using process mining techniques. Unlike previous research based on ad hoc data captures, current approach is built on the linkage of various heterogeneous real-world data (RWD) sets that share a minimum semantic linkage. RWD, defined as secondary use of routinely collected data as opposite to ad hoc data extractions, is a unique source of information for the CPW analysis due to its coverage of the caregiving activities and its wide availability. The viability of the solution is demonstrated by constructing the CPW process model of Code Stroke (Acute Stroke CPW) in the Aragon region (Spain).
Background Information for Action! is a Joint Action (JA-InfAct) on Health Information promoted by the EU Member States and funded by the European Commission within the Third EU Health Programme (2014–2020) to create and develop solid sustainable infrastructure on EU health information. The main objective of this the JA-InfAct is to build an EU health information system infrastructure and strengthen its core elements by a) establishing a sustainable research infrastructure to support population health and health system performance assessment, b) enhancing the European health information and knowledge bases, as well as health information research capacities to reduce health information inequalities, and c) supporting health information interoperability and innovative health information tools and data sources. Methods Following a federated analysis approach, JA-InfAct developed an ad hoc federated infrastructure based on distributing a well-defined process-mining analysis methodology to be deployed at each participating partners’ systems to reproduce the analysis and pool the aggregated results from the analyses. To overcome the legal interoperability issues on international data sharing, data linkage and management, partners (EU regions) participating in the case studies worked coordinately to query their real-world healthcare data sources complying with a common data model, executed the process-mining analysis pipeline on their premises, and shared the results enabling international comparison and the identification of best practices on stroke care. Results The ad hoc federated infrastructure was designed and built upon open source technologies, providing partners with the capacity to exploit their data and generate dashboards exploring the stroke care pathways. These dashboards can be shared among the participating partners or to a coordination hub without legal issues, enabling the comparative evaluation of the caregiving activities for acute stroke across regions. Nonetheless, the approach is not free of a number of challenges that have been solved, and new challenges that should be addressed in the eventual case of scaling up. For that eventual case, 12 recommendations considering the different layers of interoperability have been provided. Conclusion The proposed approach, when successfully deployed as a federated analysis infrastructure, such as the one developed within the JA-InfAct, can concisely tackle all levels of the interoperability requirements from organisational to technical interoperability, supported by the close collaboration of the partners participating in the study. Any proposal for extension, should require further thinking on how to deal with new challenges on interoperability.
A comparison between pandemic waves could help to understand the evolution of this disease. The objective of this work was to study the evolution of COVID-19 hospitalized patients on different pandemic waves in terms of severity and mortality. We performed an observational retrospective cohort study of hospitalized patients (5,220) with SARS-CoV-2 infection from February to September in Aragon, Spain. In a comparative way, we analyzed ICU admission and 30-day mortality, clinical characteristics and risk factors, of first and second waves. SARS-CoV-2 virus genome were analyzed in 236 samples. Patients in the first wave (n=2,547) were older (74 y, IQR: 60-86 vs. 70 y, IQR: 53-85; p<0.001) and showed worse clinical and analytical parameters related to severe COVID-19 than in the second wave (n=2,673). The probability of ICU admission at 30 days was 16% and 10% in the first and second wave, respectively (p<0.001). The cumulative 30-day mortality rates were 38% in the first wave and 32% in the second one (p=0.007). Survival differences were observed among patients aged 60 to 80 years. There was variability among death risk factors and virus genome between waves. Therefore, the two COVID-19 pandemic waves analyzed were different, in terms of disease severity and mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.