Background The clinical presentation of COVID-19 in patients admitted to hospital is heterogeneous. We aimed to determine whether clinical phenotypes of patients with COVID-19 can be derived from clinical data, to assess the reproducibility of these phenotypes and correlation with prognosis, and to derive and validate a simplified probabilistic model for phenotype assignment. Phenotype identification was not primarily intended as a predictive tool for mortality. MethodsIn this study, we used data from two cohorts: the COVID-19@Spain cohort, a retrospective cohort including 4035 consecutive adult patients admitted to 127 hospitals in Spain with COVID-19 between Feb 2 and March 17, 2020, and the COVID-19@HULP cohort, including 2226 consecutive adult patients admitted to a teaching hospital in Madrid between Feb 25 and April 19, 2020. The COVID-19@Spain cohort was divided into a derivation cohort, comprising 2667 randomly selected patients, and an internal validation cohort, comprising the remaining 1368 patients. The COVID-19@HULP cohort was used as an external validation cohort. A probabilistic model for phenotype assignment was derived in the derivation cohort using multinomial logistic regression and validated in the internal validation cohort. The model was also applied to the external validation cohort. 30-day mortality and other prognostic variables were assessed in the derived phenotypes and in the phenotypes assigned by the probabilistic model. Findings Three distinct phenotypes were derived in the derivation cohort (n=2667)-phenotype A (516 [19%] patients), phenotype B (1955 [73%]) and phenotype C (196 [7%])-and reproduced in the internal validation cohort (n=1368)phenotype A (233 [17%] patients), phenotype B (1019 [74%]), and phenotype C (116 [8%]). Patients with phenotype A were younger, were less frequently male, had mild viral symptoms, and had normal inflammatory parameters. Patients with phenotype B included more patients with obesity, lymphocytopenia, and moderately elevated inflammatory parameters. Patients with phenotype C included older patients with more comorbidities and even higher inflammatory parameters than phenotype B. We developed a simplified probabilistic model (validated in the internal validation cohort) for phenotype assignment, including 16 variables. In the derivation cohort, 30-day mortality rates were 2•5% (95% CI 1•4-4•3) for patients with phenotype A, 30•5% (28•5-32•6) for patients with phenotype B, and 60•7% (53•7-67•2) for patients with phenotype C (log-rank test p<0•0001). The predicted phenotypes in the internal validation cohort and external validation cohort showed similar mortality rates to the assigned phenotypes (internal validation cohort: 5•3% [95% CI 3•4-8•1] for phenotype A, 31•3% [28•5-34•2] for phenotype B, and 59•5% [48•8-69•3] for phenotype C; external validation cohort: 3•7% [2•0-6•4] for phenotype A, 23•7% [21•8-25•7] for phenotype B, and 51•4% [41•9-60•7] for phenotype C).Interpretation Patients admitted to hospital with COVID-19 can be classified into three...
If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information. About Emerald www.emeraldinsight.comEmerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation.
Care pathways (CPWs) are "multidisciplinary care plans that detail essential care steps for patients with specific clinical problems". While CPWs impact on health or cost outcomes is vastly studied, an in-depth analysis of the realworld implementation of the CPWs is an area that still remains underexplored. The present work describes how to apply an existing process mining methodology to construct the empirical CPW process models. These processmodels are a unique piece of information for health services research: for example to evaluate their conformance against the theoretical CPW described on clinical guidelines or to evaluate the impact of the process in health outcomes.To this purpose, this work relies on the design and implementation of a solution that a) synthesizes the expert knowledge on how health care is delivered within and across providers as an activity log, and b) constructs the CPW process model from that activity log using process mining techniques. Unlike previous research based on ad hoc data captures, current approach is built on the linkage of various heterogeneous real-world data (RWD) sets that share a minimum semantic linkage. RWD, defined as secondary use of routinely collected data as opposite to ad hoc data extractions, is a unique source of information for the CPW analysis due to its coverage of the caregiving activities and its wide availability. The viability of the solution is demonstrated by constructing the CPW process model of Code Stroke (Acute Stroke CPW) in the Aragon region (Spain).
Background Information for Action! is a Joint Action (JA-InfAct) on Health Information promoted by the EU Member States and funded by the European Commission within the Third EU Health Programme (2014–2020) to create and develop solid sustainable infrastructure on EU health information. The main objective of this the JA-InfAct is to build an EU health information system infrastructure and strengthen its core elements by a) establishing a sustainable research infrastructure to support population health and health system performance assessment, b) enhancing the European health information and knowledge bases, as well as health information research capacities to reduce health information inequalities, and c) supporting health information interoperability and innovative health information tools and data sources. Methods Following a federated analysis approach, JA-InfAct developed an ad hoc federated infrastructure based on distributing a well-defined process-mining analysis methodology to be deployed at each participating partners’ systems to reproduce the analysis and pool the aggregated results from the analyses. To overcome the legal interoperability issues on international data sharing, data linkage and management, partners (EU regions) participating in the case studies worked coordinately to query their real-world healthcare data sources complying with a common data model, executed the process-mining analysis pipeline on their premises, and shared the results enabling international comparison and the identification of best practices on stroke care. Results The ad hoc federated infrastructure was designed and built upon open source technologies, providing partners with the capacity to exploit their data and generate dashboards exploring the stroke care pathways. These dashboards can be shared among the participating partners or to a coordination hub without legal issues, enabling the comparative evaluation of the caregiving activities for acute stroke across regions. Nonetheless, the approach is not free of a number of challenges that have been solved, and new challenges that should be addressed in the eventual case of scaling up. For that eventual case, 12 recommendations considering the different layers of interoperability have been provided. Conclusion The proposed approach, when successfully deployed as a federated analysis infrastructure, such as the one developed within the JA-InfAct, can concisely tackle all levels of the interoperability requirements from organisational to technical interoperability, supported by the close collaboration of the partners participating in the study. Any proposal for extension, should require further thinking on how to deal with new challenges on interoperability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.