The dihydridoirida-β-diketone [IrH2{(PPh2(o-C6H4CO))2H}] (2) has been used as a homogeneous catalyst for the hydrolysis of ammonia- or amine-boranes to generate up to 3 equivalents of hydrogen in the presence of air. When using 0.5 mol% loading of 2, dimethylamine-borane is hydrolysed completely within 8 min at 30 °C and maintains its activity in consecutive runs. Ammonia-borane or tert-butylamine-borane is hydrolysed completely within 32 or 25 min respectively. Triethylamine-borane fails to be hydrolysed. Kinetic studies suggest a sequence of two consecutive first-order reactions, in which an intermediate builds up and finally falls, with the first step being the rate controlling step. ΔH1(‡) are in the range 65-85 kJ mol(-1) and negative values of ΔS1(‡) are obtained. A multinuclear NMR study of the catalyzed reaction shows the formation of a resting state (A) of the active catalyst proposed to be of the hydridodiacyl type [IrH(PPh2(o-C6H4CO))2(solvent)] with a hydride trans to the acyl group. In the absence of substrate a dormant species (B) is formed. By the reaction of hydridoirida-β-diketones with ammonia, the hydridoirida-β-ketoimine [IrHCl{(PPh2(o-C6H4CO))(PPh2(o-C6H4CNH))H}] (3) and the hydridobis(acylphosphane)aminoiridium(III) complex [IrH(PPh2(o-C6H4CO))2(NH3)] (4), with a hydride trans to phosphane, are formed. Aromatic amines such as aniline or anisidines afford cationic [IrH{(PPh2(o-C6H4CO))2H}(C6H4RNH2)]ClO4 (R = H (6); p-MeO (7); o-MeO (8)) hydridoirida-β-diketones with a coordinated amine group trans to the hydride. The dormant species B is proposed to be of the hydridobis(acylphosphine)aminoiridium(III) type with a hydride trans to the amine group.
A methodology is proposed to estimate the limit of detection (LOD) of analytical methods when multivariate calibration is applied. It tries to follow the same premises as the IUPAC methodology for univariate calibration. The mathematical support is given and algorithms such as partial least squares (PLS) regression, PLS2 and principal component regression (PCR) are used. Only multivariate raw data are used; that is, no surrogate univariate signal is deduced. Non-linearities are allowed. Near infrared (NIR) data of 5 component pseudo-gasoline samples together with simulated fluorescence synchronous spectra of binary mixtures (first order data) are used for evaluation. Experimental verification is performed using different kinds of data, namely: binary mixtures of bentazone and fenamiphos (very overlapped spectra, second order data) obtained by sequential injection (SI), and kinetic data of the reaction between the Fenton's reagent (FR) and pesticides such as atrazine, bentazone and alachlor (individual or binary mixtures, second order data). Results are always compared with independent methods previously proposed in the literature, based in the use of surrogate univariate signals. In general, similar results are found and no statistically significant differences seem to be present, except in a few cases when complex chemical systems are involved.
Benzoic acid ͑BA͒ and benzylidene acetone ͑BDA͒, together with polyethylene glycol, are used as additives in electroplating zinc baths. The simultaneous BA and BDA determination is proposed by applying partial least-squares regression to the ultraviolet ͑UV͒-visible spectra between 216 and 350 nm. Concentrations between 1.02 and 10.2 g L −1 BA and 0.100 and 0.550 g L −1 BDA can be determined. Several proposals to estimate the multivariate limit of detection ͑LOD͒ have been applied, including the use of the net analytical signal, found vs added plots, and the use of multivariate standard deviation. Depending on the method used, the values of LOD found the range between 0.1 and 0.4 g L −1 for BA and 0.01 and 0.03 g L −1 for BDA. The multivariate method has been applied to follow BA and BDA concentrations along a Zn bath life. BA concentration remains practically unchanged, but BDA concentration continuously diminishes by degradation on electrodes and by evaporation. There is a direct relation between BDA concentration and brightness of the plated piece. Thus, the proposed method can be related to brightness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.