Three new, simple, sensitive, rapid and economical spectrophotometric methods (A, B and C) have been developed for the determination of propranolol hydrochloride (PRO) in bulk drug and dosage forms. These methods are based on oxidation-bromination reaction of PRO by bromine, generated in situ by the action of acid on a bromate-bromide mixture, followed by determination of unreacted bromine by three different reaction schemes. In method A, the determination of the residual bromine is based on its ability to bleach the indigo carmine dye and by measuring the absorbance at 610 nm. The residual bromine (in method B), is treated with excess of iron(II) and the resulting iron(III) is complexed with thiocyanate and the absorbance is measured at 480 nm. Method C involves treating the unreacted bromine with a measured excess of iron(II) and the remaining iron(II) is complexed with 1,10-phenanthroline and the increase in absorbance is measured at 510 nm. In all three methods, the amount of bromine reacted corresponds to the drug content. The different experimental parameters affecting the development and stability of the colour are carefully studied and optimized. Beer's Law is valid within a concentration range of 1-13, 4-12 and 2-9 µg ml⁻¹ for methods A, B, and C, respectively. The molar absorptivity, Sandell's sensitivity, detection and quantification limits are calculated. Common excipients used as additives in pharmaceutical preparations do not interfere in the proposed methods. The proposed methods have been successfully applied to the determination of PRO in pharmaceutical preparations and the results were statistically compared with those of the official method by applying the Student's t-test and F-test.