Genetic design automation tools are necessary to expand the scale and complexity of possible synthetic genetic networks. These tools are enabled by abstraction of a hierarchy of standardized components and devices. Abstracted elements must be parametrized from data derived from relevant experiments, and these experiments must be related to the part composition of the abstract components. Here we present Logical Operators for Integrated Cell Algorithms (LOICA), a Python package for designing, modeling, and characterizing genetic networks based on a simple object-oriented design abstraction. LOICA uses classes to represent different biological and experimental components, which generate models through their interactions. These models can be parametrized by direct connection to data contained in Flapjack so that abstracted components of designs can characterize themselves. Models can be simulated using continuous or stochastic methods and the data published and managed using Flapjack. LOICA also outputs SBOL3 descriptions and generates graph representations of genetic network designs.
Accelerating the development of synthetic biology applications requires reproducible experimental findings. Different standards and repositories exist to exchange experimental data and metadata. However, the associated software tools often do not support a uniform data capture, encoding, and exchange of information. A connection between digital repositories is required to prevent siloing and loss of information. To this end, we developed the Experimental Data Connector (XDC). It captures experimental data and related metadata by encoding it in standard formats and storing the converted data in digital repositories. Experimental data is then uploaded to Flapjack and the metadata to SynBioHub in a consistent manner linking these repositories. This produces complete connected experimental data sets that are exchangeable. The information is captured using a single template Excel Workbook, which can be integrated into existing experimental workflow automation processes and semiautomated capture of results.
Mathematical and computational modeling is essential to genetic design automation and for the synthetic biology design-build-test-learn cycle. The construction and analysis of models is enabled by abstraction based on a hierarchy of components, devices, and systems that can be used to compose genetic circuits. These abstract elements must be parameterized from data derived from relevant experiments, and these experiments related to the part composition of the abstract components of the circuits measured. Here we present LOICA (Logical Operators for Integrated Cell Algorithms), a Python package for modeling and characterizing genetic circuits based on a simple object-oriented design abstraction. LOICA uses classes to represent different biological and experimental components, which generate models through their interactions. High-level designs are linked to their part composition via SynBioHub. Furthermore, LOICA communicates with Flapjack, a data management and analysis tool, to link to experimental data, enabling abstracted elements to characterize themselves.
Genetic circuits are subject to variability due to cellular and compositional contexts. Cells face changing internal states and environments, the cellular context, to which they sense and respond by changing their gene expression and growth rates. Furthermore, each gene in a genetic circuit operates in a compositional context of genes which may interact with each other and the host cell in complex ways. The context of genetic circuits can therefore change gene expression and growth rates, and measuring their dynamics is essential to understanding natural and synthetic regulatory networks that give rise to functional phenotypes. However, reconstruction of microbial gene expression and growth rate profiles from typical noisy measurements of cell populations is difficult due to the effects of noise at low cell densities among other factors. We present here a method for estimation of dynamic microbial gene expression rates and growth rates from noisy measurement data. Compared to the current state-of-the-art, our method significantly reduced the mean squared error of reconstructions from simulated data of growth and gene expression rates, improving the estimation of timing and magnitude of relevant shapes of profiles. We applied our method to characterize a triple-reporter plasmid library combining multiple transcription units in different compositional and cellular contexts in Escherichia coli. Our analysis reveals cellular and compositional context effects on microbial growth and gene expression rate dynamics, and suggests a method for dynamic ratiometric characterization of constitutive promoters relative to an in vivo reference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.