Microbial biofilms are complex, self-organized communities of bacteria, which employ physiological cooperation and spatial organization to increase both their metabolic efficiency and their resistance to changes in their local environment. These properties make biofilms an attractive target for engineering, particularly for the production of chemicals such as pharmaceutical ingredients or biofuels, with the potential to significantly improve yields and lower maintenance costs. Biofilms are also a major cause of persistent infection, and a better understanding of their organization could lead to new strategies for their disruption. Despite this potential, the design of synthetic biofilms remains a major challenge, due to the complex interplay between transcriptional regulation, intercellular signaling, and cell biophysics. Computational modeling could help to address this challenge by predicting the behavior of synthetic biofilms prior to their construction; however, multiscale modeling has so far not been achieved for realistic cell numbers. This paper presents a computational method for modeling synthetic microbial biofilms, which combines three-dimensional biophysical models of individual cells with models of genetic regulation and intercellular signaling. The method is implemented as a software tool (CellModeller), which uses parallel Graphics Processing Unit architectures to scale to more than 30,000 cells, typical of a 100 μm diameter colony, in 30 min of computation time.
Bidirectional intercellular signaling is an essential feature of multicellular organisms, and the engineering of complex biological systems will require multiple pathways for intercellular signaling with minimal crosstalk. Natural quorum‐sensing systems provide components for cell communication, but their use is often constrained by signal crosstalk. We have established new orthogonal systems for cell–cell communication using acyl homoserine lactone signaling systems. Quantitative measurements in contexts of differing receiver protein expression allowed us to separate different types of crosstalk between 3‐oxo‐C6‐ and 3‐oxo‐C12‐homoserine lactones, cognate receiver proteins, and DNA promoters. Mutating promoter sequences minimized interactions with heterologous receiver proteins. We used experimental data to parameterize a computational model for signal crosstalk and to estimate the effect of receiver protein levels on signal crosstalk. We used this model to predict optimal expression levels for receiver proteins, to create an effective two‐channel cell communication device. Establishment of a novel spatial assay allowed measurement of interactions between geometrically constrained cell populations via these diffusible signals. We built relay devices capable of long‐range signal propagation mediated by cycles of signal induction, communication and response by discrete cell populations. This work demonstrates the ability to systematically reduce crosstalk within intercellular signaling systems and to use these systems to engineer complex spatiotemporal patterning in cell populations.
As a model system to study physical interactions in multicellular systems, we used layers of Escherichia coli cells, which exhibit little or no intrinsic coordination of growth. This system effectively isolates the effects of cell shape, growth, and division on spatial self-organization. Tracking the development of fluorescence-labeled cellular domains, we observed the emergence of striking fractal patterns with jagged, self-similar shapes. We then used a large-scale, cellular biophysical model to show that local instabilities due to polar cell-shape, repeatedly propagated by uniaxial growth and division, are responsible for generating this fractal geometry. Confirming this result, a mutant of E. coli with spherical shape forms smooth, nonfractal cellular domains. These results demonstrate that even populations of relatively simple bacterial cells can possess emergent properties due to purely physical interactions. Therefore, accurate physico-genetic models of cell growth will be essential for the design and understanding of genetically programmed multicellular systems.
Plant morphogenesis is fundamentally a cellular process and the CellModeller software, through its underlying generic model, provides an advanced research tool to analyse coupled physical and biological morphogenetic mechanisms.
Accurate characterization of promoter behavior is essential for the rational design of functional synthetic transcription networks such as logic gates and oscillators. However, transcription rates observed from promoters can vary significantly depending on the growth rate of host cells and the experimental and genetic contexts of the measurement. Furthermore, in vivo measurement methods must accommodate variation in translation, protein folding, and maturation rates of reporter proteins, as well as metabolic load. The external factors affecting transcription activity may be considered to be extrinsic, and the goal of characterization should be to obtain quantitative measures of the intrinsic characteristics of promoters. We have developed a promoter characterization method that is based on a mathematical model for cell growth and reporter gene expression and exploits multiple in vivo measurements to compensate for variation due to extrinsic factors. First, we used optical density and fluorescent reporter gene measurements to account for the effect of differing cell growth rates. Second, we compared the output of reporter genes to that of a control promoter using concurrent dual-channel fluorescence measurements. This allowed us to derive a quantitative promoter characteristic (ρ) that provides a robust measure of the intrinsic properties of a promoter, relative to the control. We imposed different extrinsic factors on growing cells, altering carbon source and adding bacteriostatic agents, and demonstrated that the use of ρ values reduced the fraction of variance due to extrinsic factors from 78% to less than 4%. This is a simple and reliable method to quantitatively describe promoter properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.