A dual catalytic system combining photoredox and Lewis base catalysis has been developed. By the appropriate choice of light source and catalyst, the photoredox cycle can be optimally modulated to match the base catalyzed reaction cycle to provide the corresponding products under mild reaction conditions.
A continuous flow procedure for the
efficient metal-free, visible
light photoredox-catalyzed α-functionalization of tertiary amines
has been developed. Rose Bengal has been identified as an effective
organic photocatalyst for continuous flow C–C and C–P
bond formations as well as multicomponent reactions.
The review highlights the different advantages associated with organocatalytic transformations performed in continuous-flow systems and presents the reactions which have been successfully achieved to date. Particular focus is placed on the comparison between batch and flow applications in order to show the advantages and disadvantages and to demonstrate the great potential for applying organocatalysis as well as combined organo and photoredox catalyzed reactions in continuous flow.
Tertiary amines were readily converted into secondary amines through a photoredox-catalyzed N-demethylation, a bioinspired procedure that resembles nature's enzymatic pathways. Furthermore, the selective oxidation of primary amines as well as primary and secondary alcohols was achieved using photoredox catalysis. The protocols feature low catalyst loadings (1−2 mol %) and offer access to diverse imines and carbonyl compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.