A continuous flow procedure for the
efficient metal-free, visible
light photoredox-catalyzed α-functionalization of tertiary amines
has been developed. Rose Bengal has been identified as an effective
organic photocatalyst for continuous flow C–C and C–P
bond formations as well as multicomponent reactions.
Cinchona alkaloid catalysts in combination with air- and moisture-stable N-trifluoromethylthiophthalimide as electrophilic SCF3 source enabled the catalytic enantioselective trifluoromethylsulfenylation. Thus, a series of α-SCF3 esters that bear a quaternary carbon stereogenic center were obtained with excellent yield and enantioselectivity. Moreover, the products can be readily converted into valuable α-SCF3 β-hydroxyesters.
The iterative homologation of boronic esters using chiral lithiated benzoate esters and chloromethyllithium has been applied to the highly efficient syntheses of two natural products, (+)-kalkitoxin and (+)-hydroxyphthioceranic acid. The chiral lithiated benzoate esters (>99% ee) were generated from the corresponding stannanes, which themselves were prepared by Hoppe-Beak deprotonation of ethyl 2,4,6-triisopropyl-benzoate with s-BuLi in the presence of (+)- or (-)-sparteine and trapping with Me3SnCl followed by recrystallization. In addition, it was found that purification between several homologations could be avoided, substantially increasing both chemical and manpower efficiency. In the case of (+)-kalkitoxin, six iterative homologations were conducted on commercially available p-MeOC6H4CH2Bpin to build up the core of the molecule before the C-B bond was converted into the desired C-N bond, without purification of intermediates. In the case of (+)-hydroxyphthioceranic acid, 16 iterative homologations were conducted on p-MeOC6H4Bpin with only four intermediate purifications before oxidation of the C-B bond to the desired alcohol. The stereocontrolled and efficient syntheses of these complex molecules highlight the power of iterative chemical synthesis using boronic esters.
SummaryThe asymmetric organocatalytic hydrogenation of benzoxazines, quinolines, quinoxalines and 3H-indoles in continuous-flow microreactors has been developed. Reaction monitoring was achieved by using an inline ReactIR flow cell, which allows fast and convenient optimization of reaction parameters. The reductions proceeded well, and the desired products were isolated in high yields and with excellent enantioselectivities.
The polypropionate motif is ubiquitous, being characteristic of the most important family of natural products for human health, the polyketides. Numerous strategies have been devised to construct these molecules with high stereocontrol, but certain stereoisomers remain challenging to prepare. We now describe the development of an iterative assembly line strategy for the construction of polypropionates. An assembly line strategy for the synthesis of deoxypolypropionates has already been described. However, the introduction of carbinol units required the development of new building blocks and new reaction conditions. This has been achieved by the use of enantioenriched lithiated α-chlorosilanes [1-((2'-lithiochloromethyldimethylsilyl)-methyl)-2-(methoxymethyl)-pyrrolidine], thus enabling the programmed synthesis of polypropionates in a fully stereocontrolled manner, including the stereochemically challenging anti-anti isomers. The versatility of the approach is exemplified in its extension to the synthesis of 1,3-related polyols. The methodology now allows access to a much wider family of polyketide natural products with stereochemistry being dialled in at will.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.