Non-enzymatic amperometric glucose sensors have gained much attention in the past decade because of the better chemical and thermal stability and biocompatibility compared to conventional sensors based on the use of biomolecules. This study focuses on a novel copper and copper oxide-based glucose sensor synthesized by an electrodeposition technique through a rigorous protocol which reports an excellent analytical performance due to its structure and its increased active area. In addition, the linear response range, detection limit and sensitivity were 0.5–5.0 mmol L−1, 0.002 mmol L−1, 904 μA mmol−1 L−1 cm−2, respectively. Results show a reliable electrode as it is chemically stable, exhibits rapid and excellent sensitivity, and it is not significantly affected by coexisting species present in the blood samples; furthermore, it reports a maximum relative standard deviation error (RSD) of 6%, and showed long operating life as the electrode was used for thousand measurements of 4.0 mmol L−1 glucose solution during three days.
Glucose sensing devices have experienced significant progress in the last years in response to the demand for cost-effective monitoring. Thus, research efforts have been focused on achieving reliable, selective, and sensitive sensors able to monitor the glucose level in different biofluids. The development of enzyme-based devices is challenged by poor stability, time-consuming, and complex purification procedures, facts that have given rise to the synthesis of enzyme-free sensors. Recent advances focus on the use of different components: metal-organic frameworks (MOFs), carbon nanomaterials, or metal oxides. Motivated by this topic, several reviews have been published addressing the sensor materials and synthesis methods, gathering relevant information for the development of new nanostructures. However, the abundant information has not concluded yet in commercial devices and is not useful from an engineering point of view. The dependence of the electrode response on its physico-chemical nature, which would determine the selection and optimization of the materials and synthesis method, remains an open question. Thus, this review aims to critically analyze from an engineering vision the existing information on non-enzymatic glucose electrodes; the analysis is performed linking the response in terms of sensitivity when interferences are present, stability, and response under physiological conditions to the electrode characteristics.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.