General rightsThis document is made available in accordance with publisher policies. Please cite only the published version using the reference above. The development of flat, compact beam-steering devices with no bulky moving parts is opening up a new route to a variety of exciting applications, such as LIDAR scanning systems for autonomous vehicles, robotics and sensing, freespace, and even surface wave optical signal coupling. In this paper, the design, fabrication and characterization of innovative, nonvolatile, and reconfigurable beam-steering metadevices enabled by a combination of optical metasurfaces and chalcogenide phase-change materials is reported. The metadevices reflect an incident optical beam in a mirror-like fashion when the phase-change layer is in the crystalline state, but reflect anomalously at predesigned angles when the phase-change layer is switched into its amorphous state. Experimental angleresolved spectrometry measurements verify that fabricated devices perform as designed, with high efficiencies, up to 40%, when operating at 1550 nm. Laserinduced crystallization and reamorphization experiments confirm reversible switching of the device. It is believed that reconfigurable phase-change-based beam-steering and beam-shaping metadevices, such as those reported here, can offer real applications advantages, such as high efficiency, compactness, fast switching times and, due to the nonvolatile nature of chalcogenide phasechange materials, low power consumption.
All-dielectric metasurfaces comprising arrays of nanostructured high-refractive-index materials are re-imagining what is achievable in terms of the manipulation of light. However, the functionality of conventional dielectric-based metasurfaces is fixed by design; thus, their optical response is locked in at the fabrication stage. A far wider range of applications could be addressed if dynamic and reconfigurable control were possible. We demonstrate this here via the novel concept of hybrid metasurfaces, in which reconfigurability is achieved by embedding sub-wavelength inclusions of chalcogenide phase-change materials within the body of silicon nanoresonators. By strategic placement of an ultra-thin G e 2 S b 2 T e 5 layer and reversible switching of its phase-state, we show individual, multilevel, and dynamic control of metasurface resonances. We showcase our concept via the design, fabrication, and characterization of metadevices capable of dynamically filtering and modulating light in the near infrared (O and C telecom bands), with modulation depths as high as 70% and multilevel tunability. Finally, we show numerically how the same approach can be re-scaled to shorter wavelengths via appropriate material selection, paving the way to additional applications, such as high-efficiency vivid structural color generators in the visible spectrum. We believe that the concept of hybrid all-dielectric/phase-change metasurfaces presented in this work could pave the way for a wide range of design possibilities in terms of multilevel, reconfigurable, and high-efficiency light manipulation.
Metasurfaces and nanoantennas are redefining what can be achieved in terms of optical beam manipulation, as they provide a versatile design platform towards moulding the flow of light at will. Yet, once a conventional metasurface is designed and realised, its effect on optical beams is repeatable and stationary, thus its performance is 'locked-in' at the fabrication stage. A much wider range of applications, such as dynamic beam steering, reconfigurable and dynamic lensing, optical modulation and reconfigurable spectral filtering, could be achieved if real-time tuning of metasurface optical properties were possible. Chalcogenide phase-change materials, because of their rather unique ability to undergo abrupt, repeatable and non-volatile changes in optical properties when switched between their amorphous and crystalline phases, have in recent years been combined with metasurface architectures to provide a promising platform for the achievement of dynamic tunability. In this paper, the concept of dynamically tunable phase-change metasurfaces is introduced, and recent results spanning the electromagnetic spectrum from the visible right through to the THz regime are presented and discussed. The progress, potential applications, and possible future perspectives of phase-change metasurface technology are highlighted, and requirements for the successful implementation of real-world applications are discussed.
In [3H]serine-labelled granulosa cells treatment with TNF alpha (10 ng/ml) resulted in a transient decrease in cellular [3H]sphingomyelin and generation of [3H]ceramide that remained elevated 60 min later. In cells labelled with [methyl-14C]choline, TNF alpha induced a similar reduction in [14C]sphingomyelin content that was accompanied by a sustained elevation in [14C]phosphorylcholine levels. In FSH-primed cells, TNF alpha inhibited P450-AROM activity in a dose-dependent manner, an effect that was also observed in cells treated with bacterial sphingomyelinase (SMase 0.003-0.3 U/ml) or increasing concentrations (0.1-10 microM) of N-acetylsphingosine (C2-cer) a membrane-permeable analogue of ceramide. These results support the notion that sphingomyelin degradation to a bioeffector molecule ceramide, may be an early event involved in TNF alpha-induced signal transduction in granulosa cells.
We present novel phase-change material based metasurfaces for dynamic, recnofigurable and efficient wavefront shaping in the infrared spectrum. Dynamic control and reconfigurability was obtained by incorporating an ultra-thin layer of the widely-used phase change material Ge2Sb2Te5. Our approach exploits hybrid dielectic/plasmonic resonances to achieve local (subwavelength) phase control of light with low losses. A full 2π optical phase coverage was achieved with this approach, which allows for a wide flexibility in terms of realizable designs. To illustrate this concept, dynamic beam steering devices and reconfigurable planar focusing mirrors (both operating at optical telecommunications wavelengths) and their performance investigated.Absolute efficiencies up to 65% are achieved, significantly higher than the efficiencies of more commonly reported plasmonic-based phase-change metasurfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.