Objectives High breast density is a well-known risk factor for breast cancer. This study aimed to develop and adapt two (MLO, CC) deep convolutional neural networks (DCNN) for automatic breast density classification on synthetic 2D tomosynthesis reconstructions. Methods In total, 4605 synthetic 2D images (1665 patients, age: 57 ± 37 years) were labeled according to the ACR (American College of Radiology) density (A-D). Two DCNNs with 11 convolutional layers and 3 fully connected layers each, were trained with 70% of the data, whereas 20% was used for validation. The remaining 10% were used as a separate test dataset with 460 images (380 patients). All mammograms in the test dataset were read blinded by two radiologists (reader 1 with two and reader 2 with 11 years of dedicated mammographic experience in breast imaging), and the consensus was formed as the reference standard. The inter- and intra-reader reliabilities were assessed by calculating Cohen’s kappa coefficients, and diagnostic accuracy measures of automated classification were evaluated. Results The two models for MLO and CC projections had a mean sensitivity of 80.4% (95%-CI 72.2–86.9), a specificity of 89.3% (95%-CI 85.4–92.3), and an accuracy of 89.6% (95%-CI 88.1–90.9) in the differentiation between ACR A/B and ACR C/D. DCNN versus human and inter-reader agreement were both “substantial” (Cohen’s kappa: 0.61 versus 0.63). Conclusion The DCNN allows accurate, standardized, and observer-independent classification of breast density based on the ACR BI-RADS system. Key Points • A DCNN performs on par with human experts in breast density assessment for synthetic 2D tomosynthesis reconstructions. • The proposed technique may be useful for accurate, standardized, and observer-independent breast density evaluation of tomosynthesis.
Background We investigated whether features derived from texture analysis (TA) can distinguish breast density (BD) in spiral photon-counting breast computed tomography (PC-BCT). Methods In this retrospective single-centre study, we analysed 10,000 images from 400 PC-BCT examinations of 200 patients. Images were categorised into four-level density scale (a–d) using Breast Imaging Reporting and Data System (BI-RADS)-like criteria. After manual definition of representative regions of interest, 19 texture features (TFs) were calculated to analyse the voxel grey-level distribution in the included image area. ANOVA, cluster analysis, and multinomial logistic regression statistics were used. A human readout then was performed on a subset of 60 images to evaluate the reliability of the proposed feature set. Results Of the 19 TFs, 4 first-order features and 7 second-order features showed significant correlation with BD and were selected for further analysis. Multinomial logistic regression revealed an overall accuracy of 80% for BD assessment. The majority of TFs systematically increased or decreased with BD. Skewness (rho -0.81), as a first-order feature, and grey-level nonuniformity (GLN, -0.59), as a second-order feature, showed the strongest correlation with BD, independently of other TFs. Mean skewness and GLN decreased linearly from density a to d. Run-length nonuniformity (RLN), as a second-order feature, showed moderate correlation with BD, but resulted in redundant being correlated with GLN. All other TFs showed only weak correlation with BD (range -0.49 to 0.49, p < 0.001) and were neglected. Conclusion TA of PC-BCT images might be a useful approach to assess BD and may serve as an observer-independent tool.
The purpose of this study was to determine the feasibility of a deep convolutional neural network (dCNN) to accurately detect abnormal axillary lymph nodes on mammograms. In this retrospective study, 107 mammographic images in mediolateral oblique projection from 74 patients were labeled to three classes: (1) “breast tissue”, (2) “benign lymph nodes”, and (3) “suspicious lymph nodes”. Following data preprocessing, a dCNN model was trained and validated with 5385 images. Subsequently, the trained dCNN was tested on a “real-world” dataset and the performance compared to human readers. For visualization, colored probability maps of the classification were calculated using a sliding window approach. The accuracy was 98% for the training and 99% for the validation set. Confusion matrices of the “real-world” dataset for the three classes with radiological reports as ground truth yielded an accuracy of 98.51% for breast tissue, 98.63% for benign lymph nodes, and 95.96% for suspicious lymph nodes. Intraclass correlation of the dCNN and the readers was excellent (0.98), and Kappa values were nearly perfect (0.93–0.97). The colormaps successfully detected abnormal lymph nodes with excellent image quality. In this proof-of-principle study in a small patient cohort from a single institution, we found that deep convolutional networks can be trained with high accuracy and reliability to detect abnormal axillary lymph nodes on mammograms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.