Wireworms, the larvae of click beetles (Coleoptera: Elateridae), have had a centuries-long role as major soil insect pests worldwide. With insecticidal control options dwindling, research on click beetle biology and ecology is of increasing importance in the development of new control tactics. Methodological improvements have deepened our understanding of how larvae and adults spatially and temporarily utilize agricultural habitats and interact with their environment. This progress, however, rests with a few pest species, and efforts to obtain comparable knowledge on other economically important elaterids are crucial. There are still considerable gaps in our understanding of female and larval ecology; movement of elaterids within landscapes; and the impact of natural enemies, cultivation practices, and environmental change on elaterid population dynamics. This knowledge will allow generation of multifaceted control strategies, including cultural, physical, and chemical measures, tailored toward species complexes and crops across a range of appropriate spatial scales.
Herbivorous insect pests living in the soil represent a significant challenge to food security given their persistence, the acute damage they cause to plants and the difficulties associated with managing their populations. Ecological research effort into rhizosphere interactions has increased dramatically in the last decade and we are beginning to understand, in particular, the ecology of how plants defend themselves against soil-dwelling pests. In this review, we synthesise information about four key ecological mechanisms occurring in the rhizosphere or surrounding soil that confer plant protection against root herbivores. We focus on root tolerance, root resistance via direct physical and chemical defences, particularly via acquisition of siliconbased plant defences, integration of plant mutualists (microbes and entomopathogenic nematodes, EPNs) and the influence of soil history and feedbacks. Their suitability as management tools, current limitations for their application, and the opportunities for development are evaluated. We identify opportunities for synergy between these aspects of rhizosphere ecology, such as mycorrhizal fungi negatively affecting pests at the root-interface but also increasing plant uptake of silicon, which is also known to reduce herbivory. Finally, we set out research priorities for developing potential novel management strategies. Re: Revision of our review APSOIL-D-16-00199 Dear Prof van Gestel, Many thanks for your email advising us that our paper may be considered for publication pending major revisions. Please find enclosed our revised article New frontiers in belowground ecology for plant protection from root-feeding insects. As you will see this paper has been substantially rewritten and developed. Full details of these changes are in our response to reviewers. We are thankful to both reviewers for constructive comments and suggestions. We are grateful for the extension you provided and very sorry that we were late returning this revision to you. Please don't hesitate to contact me if I can provide further information.
This is the peer reviewed version of the following article: Bearup et al. (2016) Revisiting Brownian motion as a description of animal movement: a comparison to experimental movement data, Methods in Ecology and Evolution., which has been published in final form at http://dx.doi.org/10.1111/2041-210X.12615. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version -refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website. TakedownIf you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. Accepted ArticleRevisiting Brownian motion as a description of animal movement: a comparison to experimental movement data This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/2041-210X.12615 This article is protected by copyright. All rights reserved. Accepted ArticleAbstract 1. Characterisation of patterns of animal movement is a major challenge in ecology with applications to conservation, biological invasions, and pest monitoring. Brownian random walks, and diffusive flux as their mean field counterpart, provide one framework in which to consider this problem. However, it remains subject to debate and controversy. This study presents a test of the diffusion framework using movement data obtained from controlled experiments.2. Walking beetles (Tenebrio molitor ) were released in an open circular arena with a central hole and the number of individuals falling from the arena edges was monitored over time. These boundary counts were compared, using curve fitting, to the predictions of a diffusion model.The diffusion model is solved precisely, without using numerical simulations.3. We find that the shape of the curves derived from the diffusion model is a close match to those found experimentally. Furthermore, in general, estimates of the total population obtained from the relevant solution of the diffusion equation are in excellent agreement with the experimental population. Estimates of the dispersal rate of individuals depend on how accurately the initial release distribution is incorpora...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.