γ-aminobutyric acid (GABA) plays many of its key roles in embryonic development and functioning of the central nervous system (CNS) by acting on ligand gated chloride-permeable channels known as GABAA receptors (GABAAR). Classically, GABAARmediated synaptic communication is tailored to allow rapid and precise transmission of information to synchronize the activity of large populations of cells to generate and maintain neuronal networks oscillations. An alternative type of inhibition mediated by GABAA receptors, initially described about 25 years ago, is characterized by a tonic activation of receptors that react to ambient extracellular GABA. The receptors that mediate this action are wide-spread throughout the nerve cells but are located distant from the sites of GABA release, and therefore they have been called extrasynaptic GABAA receptors. The molecular nature of the extrasynaptic GABAA receptors and the tonic inhibitory current they generate have been characterized in many brain structures, and due to its relevance in controlling neuron excitability they have become attractive pharmacological targets for a variety of neurological disorders such as schizophrenia, epilepsy and Parkinson disease. In the spinal cord, early studies have implicated these receptors in anesthesia, chronic pain, motor control, and locomotion. This review highlights past and present developments in the field of extrasynaptic GABAA receptors and emphasizes their subunit containing distribution and physiological role in the spinal cord.
Motoneurons are furnished with a vast repertoire of ionotropic and metabotropic receptors as well as ion channels responsible for maintaining the resting membrane potential and involved in the regulation of the mechanisms underlying its membrane excitability and firing properties. Among them, the GABAA receptors, which respond to GABA binding by allowing the flow of Cl− ions across the membrane, mediate two distinct forms of inhibition in the mature nervous system, phasic and tonic, upon activation of synaptic or extrasynaptic receptors, respectively. In a previous work we showed that furosemide facilitates the monosynaptic reflex without affecting the dorsal root potential. Our data also revealed a tonic inhibition mediated by GABAA receptors activated in motoneurons by ambient GABA. These data suggested that the high affinity GABAA extrasynaptic receptors may have an important role in motor control, though the molecular nature of these receptors was not determined. By combining electrophysiological, immunofluorescence and molecular biology techniques with pharmacological tools here we show that GABAA receptors containing the α6 subunit are expressed in adult turtle spinal motoneurons and can function as extrasynaptic receptors responsible for tonic inhibition. These results expand our understanding of the role of GABAA receptors in motoneuron tonic inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.