To investigate the relationship between left ventricular (LV) long-axis strain (LAS) and LV sphericity index (LVSI) and outcomes in patients with nonischemic dilated cardiomyopathy (NIDCM) and myocardial replacement fibrosis confirmed by late gadolinium enhancement (LGE) using cardiac magnetic resonance imaging (cMRI), we conducted a prospective study on 178 patients (48 ± 14.4 years; 25.2% women) with first NIDCM diagnosis. The evaluation protocol included ECG monitoring, echocardiography and cMRI. LAS and LVSI were cMRI-determined. Major adverse cardiovascular events (MACEs) were defined as a composite outcome including heart failure (HF), ventricular arrhythmias (VAs) and sudden cardiac death (SCD). After a median follow-up of 17 months, patients with LGE+ had increased risk of MACEs. Kaplan-Meier curves showed significantly higher rate of MACEs in patients with LGE+ (p < 0.001), increased LVSI (p < 0.01) and decreased LAS (p < 0.001). In Cox analysis, LAS (HR = 1.32, 95%CI (1.54–9.14), p = 0.001), LVSI [HR = 1.17, 95%CI (1.45–7.19), p < 0.01] and LGE+ (HR = 1.77, 95%CI (2.79–12.51), p < 0.0001) were independent predictors for MACEs. In a 4-point risk scoring system based on LV ejection fraction (LVEF) < 30%, LGE+, LAS > −7.8% and LVSI > 0.48%, patients with 3 and 4 points had a significantly higher risk for MACEs. LAS and LVSI are independent predictors of MACEs and provide incremental value beyond LVEF and LGE+ in patients with NIDCM and myocardial fibrosis.
Left atrial (LA) geometry and phasic functions are frequently impaired in non-ischaemic dilated cardiomyopathy (NIDCM). Cardiac magnetic resonance (CMR) can accurately measure LA function and geometry parameters. We sought to investigate their prognostic role in patients with NIDCM. We prospectively examined 212 patients with NIDCM (49 ± 14.2-year-old; 73.5% males) and 106 healthy controls. LA volumes, phasic functions, geometry, and fibrosis were determined using CMR. A composite outcome (cardiac death, ventricular tachyarrhythmias, heart failure hospitalization) was ascertained over a median of 26 months. LA phasic functions, sphericity index (LASI) and late gadolinium enhancement (LA-LGE) were considerably impaired in the diseased group (p < 0.001) and significantly correlated with impaired LV function parameters (p < 0.0001). After multivariate analysis, LA volumes, LASI, LA total strain (LA-εt) and LA-LGE were associated with increased risk of composite outcome (p < 0.001). Kaplan–Meier analysis showed significantly higher risk of composite endpoint for LA volumes (all p < 0.01), LASI > 0.725 (p < 0.003), and LA-εt < 30% (p < 0.0001). Stepwise Cox proportional-hazards models demonstrated a considerable incremental predictive value which resulted by adding LASI to LA-εt (Chi-square = 10.2, p < 0.001), and afterwards LA-LGE (Chi-Square = 15.8; p < 0.0001). NIDCM patients with defective LA volumes, LASI, LA-LGE and LA-εt had a higher risk for an outcome. LA-εt, LASI and LA-LGE provided independent incremental predictive value for outcome.
To analyse the predictive ability and incremental value of left ventricular longitudinal axis strain (LAS) and late gadolinium enhancement (LGE) using standard cardiovascular magnetic resonance (CMR) imaging for the diagnosis and prognosis of severe aortic stenosis (AS) in patients with an indication for aortic valve replacement. We conducted a prospective study on 52 patients with severe AS and 52 volunteers. The evaluation protocol included standard biochemistry tests, novel biomarkers of myocardial fibrosis, 12-lead electrocardiograms and 24-hour Holter, the 6-minute walk test and extensive echocardiographic and CMR imaging studies. Outcomes were defined as the composite of major cardiovascular events (MACEs). Among AS patients, most (n = 17, 77.2%) of those who exhibited LGE at CMR imaging had MACEs during follow-up. Kaplan–Meier curves for event-free survival showed a significantly higher rate of MACEs in patients with LGE (p < 0.01) and decreased LAS (p < 0.001). In Cox regression analysis, only reduced LAS (hazard ratio 1.33, 95% CI (1.01 to 1.74), p < 0.01) and the presence of LGE (hazard ratio 11.3, 95% CI (1.82 to 70.0), p < 0.01) were independent predictors for MACEs. The predictive value increased if both LGE and reduced LAS were added to left ventricular ejection fraction (LVEF). None of the biomarkers of increased collagen turnover exhibited any predictive value for MACEs. LAS by CMR is an independent predictor of outcomes in patients with AS and provides incremental value beyond the assessment of LVEF and the presence of LGE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.