Hepatitis C virus (HCV) is a positive strand RNA virus that propagates primarily in the liver. We show here that the liver-specific microRNA-122 (miR-122), a member of a class of small cellular RNAs that mediate posttranscriptional gene regulation usually by repressing the translation of mRNAs through interaction with their 3 0 -untranslated regions (UTRs), stimulates the translation of HCV. Sequestration of miR-122 in liver cell lines strongly reduces HCV translation, whereas addition of miR-122 stimulates HCV translation in liver cell lines as well as in the non-liver HeLa cells and in rabbit reticulocyte lysate. The stimulation is conferred by direct interaction of miR-122 with two target sites in the 5 0 -UTR of the HCV genome. With a replication-defective NS5B polymerase mutant genome, we show that the translation stimulation is independent of viral RNA synthesis. miR-122 stimulates HCV translation by enhancing the association of ribosomes with the viral RNA at an early initiation stage. In conclusion, the liver-specific miR-122 may contribute to HCV liver tropism at the level of translation.
Translation of Hepatitis C Virus (HCV) RNA is directed by an internal ribosome entry site (IRES) in the 5′-untranslated region (5′-UTR). HCV translation is stimulated by the liver-specific microRNA-122 (miR-122) that binds to two binding sites between the stem-loops I and II near the 5′-end of the 5′-UTR. Here, we show that Argonaute (Ago) 2 protein binds to the HCV 5′-UTR in a miR-122-dependent manner, whereas the HCV 3′-UTR does not bind Ago2. miR-122 also recruits Ago1 to the HCV 5’-UTR. Only miRNA duplex precursors of the correct length stimulate HCV translation, indicating that the duplex miR-122 precursors are unwound by a complex that measures their length. Insertions in the 5′-UTR between the miR-122 binding sites and the IRES only slightly decrease translation stimulation by miR-122. In contrast, partially masking the miR-122 binding sites in a stem-loop structure impairs Ago2 binding and translation stimulation by miR-122. In an RNA decay assay, also miR-122-mediated RNA stability contributes to HCV translation stimulation. These results suggest that Ago2 protein is directly involved in loading miR-122 to the HCV RNA and mediating RNA stability and translation stimulation.
Hepatitis C virus (HCV) replicates preferentially in the liver, and in most cases the HCV infection becomes chronic and often results in hepatocellular carcinoma. When the HCV plus-strand RNA genome has been delivered to the cytosol of the infected cell, its translation is directed by the Internal Ribosome Entry Site (IRES) in the 5'-untranslated region (5'-UTR) of the viral RNA. Thereby, IRES activity is modulated by several host factors. In particular, the liver-specific microRNA-122 (miR-122) interacts with two target sites in the HCV 5'-UTR and stimulates HCV translation, thereby most likely contributing to HCV liver tropism. Here we show that HCV IRES-dependent translation efficiency in the hepatoma cell line Huh7 is highest during the G₀ and G₁ phases of the cell cycle but significantly drops during the S phase and even more in the G₂/M phase. The superimposed stimulation of HCV translation by ectopic miR-122 works best during the G₀, G₁ and G₂/M phases but is lower during the S phase. However, the levels of Ago2 protein do not substantially change during cell cycle phases, indicating that other cellular factors involved in HCV translation stimulation by miR-122 may be differentially expressed in different cell cycle phases. Moreover, the levels of endogenously expressed miR-122 in Huh7 cells are lowest in the S phase, indicating that the predominant G₀/G₁ state of non-dividing hepatocytes in the liver facilitates high expression of the HCV genome and stimulation by miR-122, with yet unknown factors involved in the differential extent of stimulation by miR-122.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.