The present study investigated the potential role of stromal cell-derived factor 1 (SDF-1) in human intrathymic T-cell differentiation. Results show that SDF-1 is produced by human thymic epithelial cells from the subcapsular and medullary areas, and its receptor, CXCR4, is upregulated on CD34 ؉ precursor cells committed to the T-cell lineage.
Dendritic cells (DCs) are critical regulators of immune responses that integrate signals from the innate and adaptive immune system and orchestrate T cell responses toward either immunity or tolerance. Growing evidence points to the Wnt signaling pathway as a pivotal piece in the immune balance and focuses on DCs as a direct target for their immunoregulatory role. Our results show that the increase in Wnt5a signaling during the differentiation of human DCs from monocytes alters their phenotype and compromises their subsequent capacity to mature in response to TLR-dependent stimuli. These Wnt5a-DCs produce scant amounts of IL-12p70 and TNF-α but increased levels of IL-10. Consequently, these Wnt5a-DCs have a reduced capacity to induce Th1 responses that promote IL-10 secretion by CD4 T cells. Changes in the transcriptional profile of Wnt5a-DCs correlate with their unconventional phenotype caused presumably by increased IL-6/IL-10 signaling during the process of DC differentiation. The effect of Wnt5a is not a consequence of β-catenin accumulation but is dependent on noncanonical Ca2+/calmodulin-dependent protein kinase II/NF-κB signaling. Our results therefore suggest that under high levels of Wnt5a, typical of the inflammatory state and sepsis, monocytes could differentiate into unconventional DCs with tolerogenic features.
The Hedgehog (Hh) signaling pathway is involved in the development of many tissues during embryogenesis, but has also been described to function in adult self-renewing tissues. In the immune system, Sonic Hedgehog (Shh) regulates intrathymic T cell development and modulates the effector functions of peripheral CD4+ T cells. In this study we investigate whether Shh signaling is involved in peripheral B cell differentiation in mice. Shh is produced by follicular dendritic cells, mainly in germinal centers (GCs), and GC B cells express both components of the Hh receptor, Patched and Smoothened. Blockade of the Hh signaling pathway reduces the survival, and consequently the proliferation and Ab secretion, of GC B cells. Furthermore, Shh rescues GC B cells from apoptosis induced by Fas ligation. Taken together, our data suggest that Shh is one of the survival signals provided by follicular dendritic cells to prevent apoptosis in GC B cells.
The Hedgehog (Hh) family of secreted proteins includes intercellular signaling molecules that specify cell fate and patterning during the development of many tissues. In this study we show that the different components of the Hh signaling pathway are expressed in human thymus. The three mammalian Hh proteins, Sonic (Shh), Indian (Ihh), and Desert (Dhh) hedgehog, are produced by thymic epithelial cells. Shh-expressing epithelial cells are restricted to the thymic subcapsula and medulla, whereas Ihh- and Dhh-producing epithelial cells are distributed throughout the thymus. The requisite Hh receptors, Patched 1(Ptc1) and Smoothened (Smo), and the Gli transcription factors are expressed by thymocytes and also by epithelial cells. Ptc1 is expressed in most thymocyte subsets, whereas Smo expression is mainly associated with immature thymocytes. The isoform of the Ptc receptor, Ptc2, is expressed only by intrathymic progenitor cells and epithelial cells. Other Hh-binding proteins with modulating functions, such as Hedgehog-interacting protein (Hip) and growth arrest-specific gene-1 (Gas-1), are also expressed in human thymus. Our study shows that the intrathymic expression pattern of the Hh signaling pathway components is complex and suggests that Hh proteins may regulate human thymocyte differentiation from the earliest developmental stages, as well as thymic epithelial cell function.
T-cell differentiation is driven by a complex network of signals mainly derived from the thymic epithelium. In this study we demonstrate in the human thymus that cortical epithelial cells produce bone morphogenetic protein 2 (BMP2) and BMP4 and that both thymocytes and thymic epithelium express all the molecular machinery required for a response to these proteins. BMP receptors, BMPRIA and BMPRII, are mainly expressed by cortical thymocytes while BMPRIB is expressed in the majority of the human thymocytes. Some thymic epithelial cells from cortical and medullary areas express BMP receptors, being also cell targets for in vivo BMP2/4 signalling. The treatment with BMP4 of chimeric human-mouse fetal thymic organ cultures seeded with CD34+ human thymic progenitors results in reduced cell recovery and inhibition of the differentiation of human thymocytes from CD4- CD8- to CD4+ CD8+ cell stages. These results support a role for BMP2/4 signalling in human T-cell differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.