Dogs with spontaneous tumors treated in veterinary hospitals offer an excellent opportunity for studying immunotherapies, including oncolytic viruses. Oncolytic viruses have advanced into the clinic as an intratumorally administered therapeutic; however, intravenous delivery has been hindered by neutralization in the blood. To circumvent this hurdle, mesenchymal stem cells have been used as a "Trojan horse." Here, we present the treatment of 27 canine patients with cancer with canine mesenchymal stem cells infected with ICOCAV17, a canine oncolytic adenovirus. No significant adverse effects were found. The response rate was 74%, with 14.8% showing complete responses, including total remissions of lung metastasis. We detected virus infection, stromal degeneration, and immune cell infiltration in tumor biopsies after 4 weeks of treatment. The increased presence of antiadenoviral antibodies in the peripheral blood of treated dogs did not appear to prevent the clinical benefit of this therapy. These data indicate that oncolytic viruses loaded in mesenchymal stem cells represent an effective cancer immunotherapy. The classical clinical limitations of antitumoral viroimmunotherapy can be overcome by use of mesenchymal stem cells. http://cancerres.aacrjournals.org/content/canres/78/17/4891/F1.large.jpg .
contributed equally to this work. SummaryIn the present study, we have analysed the phenotype of EphB2 and/or EphB3 deficient thymocytes confirming and extending previous studies on the role of this family of molecules in T-cell differentiation. In all mutant thymuses statistically significant reduced cell contents were observed. This reduction of thymic cellularity correlated with increased proportions of apoptotic cells, largely both double negative (DN; CD4 ) CD8 ) ) and double positive (CD4 + CD8 + ) cells, and decreased proportions of DN cycling cells. Adult deficient thymuses also showed increased proportions of DN cells but not significant variations in the percentages of other thymocyte subsets. In absolute terms, the thymocyte number decreased significantly in all thymocyte compartments from the DN3 (CD44 ) CD25 + ) cell stage onward, without variations in the numbers of both DN1 (CD44 + CD25 ) ) and DN2 (CD44 + CD25 + ) cells. Remarkably, all these changes also occurred from the 15-day fetal EphB2 and/or EphB3 deficient mice, suggesting that adult phenotype results from the gradual accumulations of defects appearing early in the thymus ontogeny. As a reflection of thymus condition, a reduction in the number of T lymphocytes occurred in the peripheral blood and mesenteric lymph nodes, but not in spleen, maintaining the proportions of T-cell subsets defined by CD4/CD8 marker expression, in all cases.
The Eph and ephrin families are involved in numerous developmental processes. Recently, an increasing body of evidence has related these families with some aspects of T cell development. In the present study, we show that the addition of either EphB2-Fc or ephrinB1-Fc fusion proteins to fetal thymus organ cultures established from 17-dayold fetal mice decreases the numbers of both double-positive (CD4 + CD8 + ) and singlepositive (both CD4 + CD8 -and CD4 -CD8 + ) thymocytes, in correlation with increased apoptosis. By using reaggregate thymus organ cultures formed by fetal thymic epithelial cells (TEC) and CD4 + CD8 + thymocytes, we have also demonstrated that ephrinB1-Fc proteins are able to disorganize the three-dimensional epithelial network that in vivo supports the T cell maturation, and to alter the thymocyte interactions. In addition, in an in vitro model, Eph/ephrinB-Fc treatment also decreases the formation of cell conjugates by CD4 + CD8 + thymocytes and TEC as well as the TCR-dependent signaling between both cell types. Finally, immobilized EphB2-Fc and ephrinB1-Fc modulate the anti-CD3 antibody-induced apoptosis of CD4 + CD8 + thymocytes in a process dependent on concentration. These results therefore support a role for Eph/ephrinB in the processes of development and selection of thymocytes as well as in the establishment of the three-dimensional organization of TEC.
The Hedgehog (Hh) signaling pathway is involved in the development of many tissues during embryogenesis, but has also been described to function in adult self-renewing tissues. In the immune system, Sonic Hedgehog (Shh) regulates intrathymic T cell development and modulates the effector functions of peripheral CD4+ T cells. In this study we investigate whether Shh signaling is involved in peripheral B cell differentiation in mice. Shh is produced by follicular dendritic cells, mainly in germinal centers (GCs), and GC B cells express both components of the Hh receptor, Patched and Smoothened. Blockade of the Hh signaling pathway reduces the survival, and consequently the proliferation and Ab secretion, of GC B cells. Furthermore, Shh rescues GC B cells from apoptosis induced by Fas ligation. Taken together, our data suggest that Shh is one of the survival signals provided by follicular dendritic cells to prevent apoptosis in GC B cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.