Defects in iron absorption and utilization lead to iron deficiency and overload disorders. Adult mammals absorb iron through the duodenum, whereas embryos obtain iron through placental transport. Iron uptake from the intestinal lumen through the apical surface of polarized duodenal enterocytes is mediated by the divalent metal transporter, DMTi. A second transporter has been postulated to export iron across the basolateral surface to the circulation. Here we have used positional cloning to identify the gene responsible for the hypochromic anaemia of the zebrafish mutant weissherbst. The gene, ferroportin1, encodes a multiple-transmembrane domain protein, expressed in the yolk sac, that is a candidate for the elusive iron exporter. Zebrafish ferroportin1 is required for the transport of iron from maternally derived yolk stores to the circulation and functions as an iron exporter when expressed in Xenopus oocytes. Human Ferroportin1 is found at the basal surface of placental syncytiotrophoblasts, suggesting that it also transports iron from mother to embryo. Mammalian Ferroportin1 is expressed at the basolateral surface of duodenal enterocytes and could export cellular iron into the circulation. We propose that Ferroportin1 function may be perturbed in mammalian disorders of iron deficiency or overload.
Although the ontogeny of hematopoietic stem cells (HSCs) in vertebrates has been studied intensely, a lineage relationship between the HSCs found in the developmentally successive hematopoietic organs remains to be shown. By using an in situ photoactivatable cell tracer in the transparent zebrafish embryo, we demonstrated that definitive blood precursors appeared between the dorsal aorta and axial vein, validating the homology of this tissue with the AGM (aorta-gonad-mesonephros) of amniotes. These cells first migrated through the blood to a previously undescribed caudal hematopoietic tissue (CHT), where they differentiated, expanded, and further migrated to seed the definitive hematopoietic organs, the thymus and kidney. Immigrants on the way to the thymus expressed c-myb and ikaros but not rag1; they were probably no longer HSCs, however, because they lacked scl and runx1 expression, unlike immigrants to the kidney. The CHT thus has a hematopoietic function similar to that of the mammalian fetal liver.
The first leukocytes that arise in the development of vertebrate embryos are the primitive macrophages, which differentiate in the yolk sac and then quickly invade embryonic tissues. These macrophages have been considered to constitute a separate lineage, giving rise to no other cell type. Using an in vivo photoactivatable cell tracer in the transparent zebrafish (Danio rerio) embryo, we demonstrated that this lineage also gave rise to an equal or higher number of neutrophilic granulocytes. We were surprised to find that the differentiation of these primitive neutrophils occurs only after primitive myeloid progenitors have dispersed in the tissues. By 2 days after fertilization, these neutrophils have become the major leukocyte type found wandering in the epidermis and mesenchyme. Like the primitive macrophages, all primitive and larval neutrophils express PU.1 and L-plastin and they are highly attracted to local infections, yet only a small fraction of them phagocytose microbes, and to a much lesser extent per cell than the macrophages. They are also attracted to variously stressed or malformed tissues, suggesting a wider role than antimicrobial defense.
We recently demonstrated in zebrafish the developmental migration of emerging hematopoietic stem cells (HSCs) that is thought to occur in mammalian embryos, from the aorta-gonad-mesonephros (AGM) area to the successive hematopoietic organs. CD41 is the earliest known molecular marker of nascent HSCs in mammalian development. In this study, we show that in CD41-green fluorescent protein (GFP) transgenic zebrafish embryos, the transgene is expressed by emerging HSCs in the AGM, allowing us for the first time to image their behavior and trace them in real time. We find that the zebrafish AGM contains no intraaortic cell clusters, so far considered a hallmark of HSC emergence. CD41-GFP low HSCs emerge in the subaortic mesenchyme and enter the circulation not through the dorsal aorta but through the axial vein, the peculiar structure of which facilitates their intravasation. The rise in CD41-gfp expression among cmyb ؉ HSC precursors is asynchronous and marks their competence to leave the AGM and immediately seed the caudal hematopoietic tissue (which has a hematopoietic function analogous to that of the mammalian fetal liver). Imaging the later migration of CD41-GFP ؉ precursors to the nascent thymus reveals that although some reach the thymus by extravasating from the nearest vein, most travel for hours through the mesenchyme from surprisingly diverse and remote sites of extravasation. (Blood. 2008;111: 1147-1156)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.