BackgroundGap junctions between β-cells participate in the precise regulation of insulin secretion. Adherens junctions and their associated proteins are required for the formation, function and structural maintenance of gap junctions. Increases in the number of the gap junctions between β-cells and enhanced glucose-stimulated insulin secretion are observed during pregnancy. In contrast, protein restriction produces structural and functional alterations that result in poor insulin secretion in response to glucose. We investigated whether protein restriction during pregnancy affects the expression of mRNA and proteins involved in gap and adherens junctions in pancreatic islets. An isoenergetic low-protein diet (6% protein) was fed to non-pregnant or pregnant rats from day 1–15 of pregnancy, and rats fed an isocaloric normal-protein diet (17% protein) were used as controls.ResultsThe low-protein diet reduced the levels of connexin 36 and β-catenin protein in pancreatic islets. In rats fed the control diet, pregnancy increased the levels of phospho-[Ser279/282]-connexin 43, and it decreased the levels of connexin 36, β-catenin and beta-actin mRNA as well as the levels of connexin 36 and β-catenin protein in islets. The low-protein diet during pregnancy did not alter these mRNA and protein levels, but avoided the increase of levels of phospho-[Ser279/282]-connexin 43 in islets. Insulin secretion in response to 8.3 mmol/L glucose was higher in pregnant rats than in non-pregnant rats, independently of the nutritional status.ConclusionShort-term protein restriction during pregnancy prevented the Cx43 phosphorylation, but this event did not interfer in the insulin secretion.
In this study, we analysed the frequency of micronuclei (MN), nucleoplasmic bridges
(NPBs) and nuclear buds (NBUDs) and evaluated mutagen-induced sensitivity in the
lymphocytes of patients chronically infected with hepatitis B virus (HBV) or
hepatitis C virus (HCV). In total, 49 patients with chronic viral hepatitis (28
HBV-infected and 21 HCV-infected patients) and 33 healthy, non-infected blood donor
controls were investigated. The frequencies (‰) of MN, NPBs and NBUDs in the controls
were 4.41 ± 2.15, 1.15 ± 0.97 and 2.98 ± 1.31, respectively. The frequencies of MN
and NPBs were significantly increased (p < 0.0001) in the patient group (7.01 ±
3.23 and 2.76 ± 2.08, respectively) compared with the control group. When considered
separately, the HBV-infected patients (7.18 ± 3.57) and HCV-infected patients (3.27 ±
2.40) each had greater numbers of MN than did the controls (p < 0.0001). The
HCV-infected patients displayed high numbers of NPBs (2.09 ± 1.33) and NBUDs (4.38 ±
3.28), but only the HBV-infected patients exhibited a significant difference (NPBs =
3.27 ± 2.40, p < 0.0001 and NBUDs = 4.71 ± 2.79, p = 0.03) in comparison with the
controls. Similar results were obtained for males, but not for females, when all
patients or the HBV-infected group was compared with the controls. The lymphocytes of
the infected patients did not exhibit sensitivity to mutagen in comparison with the
lymphocytes of the controls (p = 0.06). These results showed that the lymphocytes of
patients who were chronically infected with HBV or HCV presented greater chromosomal
instability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.