Purpose: The aim of this study was to compare the accuracy of digital dental impressions with the accuracy of impressions obtained via conventional techniques. Methods: Two different master models were created, one with parallel implants (model 1) and the other with non-parallel implants (model 2). These reference master models included 4 Klockner KL RP implants (Klockner Implant System SA, Barcelona, Spain), which were juxta-placed and equidistant in the intermentoneal region. In model 1 the implants were placed parallel to each other, whereas in model 2 the implants were placed such that there was a divergence angle of 15° between the more distal implants, and a convergence angle of 15° between the two central implants. A total of four types of impressions were obtained from model 1 (four groups, n = 10 each), including closed tray impressions with replacement abutments; open tray impression groups for dragging copings, without splinting; open tray impressions for ferrules; and impressions obtained using the 3MTM True Definition Scanner system. For model 2 three groups were created (three groups, n = 10 each), including closed tray impressions with replacement abutments; open tray impression for dragging copings, without splinting; and impressions obtained using the 3MTM True Definition Scanner system. The master models and the models obtained using conventional methods were digitalized in order to compare them via an extraoral high-resolution scanner (Imetric IScan D104i, Porretruy, Switzerland). The STL (Stereo Lithography (format for transferring 3 dimensional shape information)) digital values were loaded into reverse-engineering software and superimposed with their respective STL master models in order to evaluate deviations in three dimensions. We then analyzed the squares of the deviations in the three axes and evaluated the median and the sum of the deviation square. Statistical analysis was performed using the IBM Corp. Released 2016. IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp. The normality of the distributions was analyzed according to a Kolmogorov-Smirnov test. The median comparison was performed using the differences between the medians, analyzed using non-parametric Kruskal-Wallis and Mann-Whitney tests with a significance level of p < 0.05. Results: For model 1, the deviations of the digital impressions were smaller than those associated with the conventional techniques. The sum value in group D was 1,068,292, which was significantly lower than those of groups A, B, and C, which were shown to be 2,114,342, 2,165,491, and 1,265,918, respectively. This improvement was not observed when using model 2, however, where the conventional techniques yielded similar results. Group F simultaneously presented the lowest total square sum of the three deviations (1,257,835), indicating a significantly higher accuracy for this group in model 2, while the sum values were 1,660,975 and 1,489,328 for groups E and G, respectively. Conclusion: Digital impressions of full-arch models were abl...
BackgroundThe objective of this paper is to anatomically describe the bone morphology in the maxillary and mandibular tooth areas, which might help in planning post-extraction implants.MethodsCBCT images (Planmeca ProMax 3D) of 403 teeth (208 upper teeth and 195 lower teeth) were obtained from 49 patients referred to the Dental School of Seville from January to December 2014. The thickness of the facial wall was measured at the crest, point A, 4 mm below, point B, and at the apex, point C. The second parameter was the angle formed between the dental axis and the axis of the basal bone.ResultsA total of 403 teeth were measured. In the maxilla, 89.4% of incisors, 93.94% of canines, 78% of premolars and 70.5% of molars had a buccal bone wall thickness less than the ideal 2 mm. In the mandible, 73.5% of incisors, 49% of canines, 64% of premolars and 53% of molars had < 1 mm buccal bone thickness as measured at point B. The mean angulation in the maxilla was 11.67 ± 6.37° for incisors, 16.88 ± 7.93° for canines, 13.93 ± 8.6° for premolars, and 9.89 ± 4.8° for molars. In the mandible, the mean values were 10.63 ± 8.76° for incisors, 10.98 ± 7.36° for canines, 10.54 ± 5.82° for premolars and 16.19 ± 11.22° for molars.ConclusionsThe high incidence of a buccal wall thickness of less than 2 mm in over 80% of the assessed sites indicates the need for additional regeneration procedures, and several locations may also require custom abutments to solve the angulation problems for screw-retained crowns.
Both 0.7- and 1.5-mm machined-collar implants can be used with predictable results, as changes in peri-implant crestal bone levels are similar for both implant types and do not seem to be significant from a clinical point of view. The SCD may well depend more on the location of the abutment-implant interface than on machined-collar height.
Adequate implant stability is an essential requirement. The introduction of the Penguin resonance frequency analysis raises some questions regarding its reliability, reproducibility, and repeatability as well as how it compares to the older Osstell device.PurposeTo assess the newer Penguin implant stability coefficient (ISQ) device (vs the Osstell device).Materials and methodsA total of 120 implants were used, divided into four groups (A, B, C, and D) (according to design) and placed in fresh bovine bone. Consecutive measurements were made with both devices (Penguin/Osstell) with their respective transducers. Then, the ISQ values were measured with the Penguin device using the Osstell transducer, and vice‐versa.ResultsThe mean insertion torque (N/cm) values for the implants were as follows: Group A = 24.7 ± 9.4; Group B = 25.6 ± 9.7; Group C = 28.7 ± 7.9; Group D = 19.1 ± 5.5. The mean ISQ values for the entire sample were as follows: Penguin 67.7 ± 6.1 and Osstell 68.5 ± 9.6. The ISQ value measured with the Penguin device using a SmartPeg transducer was 67.0 ± 8.0, and that for the Osstell device using a MultiPeg transducer was 68.3 ± 7.5. The intraclass correlation coefficient (ICC) was calculated for the ISQ values obtained from both devices and was >0.90 for all transducers. When the ICC transducers were interchanged, the values were <0.77.ConclusionsBoth ISQ devices allow for reliable and repeatable measurement of implant stability; however, the use of each device‐specific transducer is recommended.
Background: Implant dentistry has evolved over time, resulting in better treatment outcomes for both patients and clinicians. The aim of this trial was to test whether the immediate loading of implants with a platform-switching design influences the marginal bone level, compared to four-week loading, after one year of follow-up. Moreover, a comparison of clinical data regarding implant survival, implant stability, and patient-reported outcome measures (PROMs) was conducted. Methods: Klockner® VEGA® implants with a ContacTi® surface were placed in partially edentulous patients in the posterior areas. Group A received an immediately loaded prosthesis (one week) and Group B received an early-loaded prosthesis (four weeks). All abutments were placed at the time of surgery. Radiographic and clinical data were recorded. Results: Twenty-one patients were treated (35 implants). No implants were lost during the study. The final marginal bone level did not show differences between groups. The bone loss at 12 months at the implant level was 0.00 mm for both groups (median). The final implant quotient stability (ISQ) values did not differ between groups (median 73 and 70.25), nor did the other clinical parameters or PROMs. Conclusions: The results suggest that neither of the loading protocols with the implants used influenced the marginal bone level—not the osseointegration rate, clinical conditions, or PROMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.